【題目】兩塊等腰直角三角形紙片AOB和COD 按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,其中AB=3,CD=6.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),如圖2所示.當(dāng)BD與CD在同一直線上(如圖3)時(shí),tanα的值等于( )
A. B.C.D.
【答案】C
【解析】
當(dāng)BD與CD在同一直線上時(shí),根據(jù)三角形AOB和COD是等腰直角三角形,可得OA=OB,OC=OD,由旋轉(zhuǎn)可得∠AOC=∠DOB,證明△AOC≌△BOD,可得AC=BD,在RtACB中,設(shè)AC=x,則BD=x,根據(jù)勾股定理列出方程求出x的值,可得tan∠ABC==.再根據(jù)∠DBO+∠DOB=∠DBO+∠ABC證明∠ABC=α,進(jìn)而求出α的正切值.
解:當(dāng)BD與CD在同一直線上(如圖3)時(shí),
∵三角形AOB和COD是等腰直角三角形,
∴OA=OB,OC=OD,
由旋轉(zhuǎn)可知:
∠AOC=∠DOB=α,
∴△AOC≌△BOD(SAS),
∴AC=BD,∠CAO=∠DBO,
∵∠DBO+∠ABC+∠BAO=90°,
∴∠CAO+∠OAB+∠ABC=90°
∴∠ACB=90°
在RtACB中,設(shè)AC=x,則BD=x,
∴BC=CD+BD=6+x,
∵AB=3,
∴根據(jù)勾股定理,得x2+(6+x)2=(3)2,
解得x=3或x=9(舍去).
∴AC=3,BC=9,
∴tan∠ABC==.
三角形AOB和COD是等腰直角三角形,
∴∠CDO=∠ABO=45°,
∴∠DBO+∠DOB=∠DBO+∠ABC,
∴∠ABC=∠DOB,
由旋轉(zhuǎn)可知:
∠AOC=∠DOB=α,
∴∠ABC=α,
∴tanα=.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接BF與DE相交于點(diǎn)G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關(guān)系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車,從入口處出發(fā)沿該公路開往草甸,途中?克郑ㄉ舷萝嚂r(shí)間忽略不計(jì)).第一班車上午8點(diǎn)發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒到班車發(fā)車時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程y(米)與時(shí)間x(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車離入口處的路程y(米)與時(shí)間x(分)函數(shù)表達(dá)式.并寫出x的取值范圍;
(2)求第一班車從入口處到達(dá)塔林所需的時(shí)間;
(3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為的直徑,弦于點(diǎn),連接,點(diǎn)是上一點(diǎn),連接并延長交于點(diǎn),交于點(diǎn).
(1)如圖1,連接.求證:;
(2)如圖2,連接,過點(diǎn)作交于點(diǎn),交延長線于點(diǎn)求證:.
(3)如圖3,在(2)的條件下,若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解“陽光體育”活動(dòng)的開展情況,從全校1000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能從A、B、C、D中選擇一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
A:踢毽子 B:乒乓球 C:籃球 D:跳繩
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,求表示區(qū)域D的扇形圓心角的度數(shù);
(3)全校學(xué)生中喜歡籃球的人數(shù)大約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB =2∠EAB.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員在某場測試中各射擊10次,兩人的測試成績?nèi)缦拢?/span>
甲 7 7 8 8 8 9 9 9 10 10
乙 7 7 7 8 8 9 9 10 10 10
這兩人10次射擊命中的環(huán)數(shù)的平均數(shù)==8.5,則測試成績比較穩(wěn)定的是 .(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見錯(cuò)誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見錯(cuò)誤,編制了10道選擇題,每題3分,對他所教的初三(1)班(2)班進(jìn)行了檢測.如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況:
(1)利用圖中提供的信息,補(bǔ)全下表:
(2)若把24分以上(含24分)記為”優(yōu)秀”,兩班各50名學(xué)生,請估計(jì)兩班各有多少名學(xué)生成績優(yōu)秀;
(3)觀察圖中數(shù)據(jù)分布情況,請通過計(jì)算方差說明哪個(gè)班的學(xué)生糾錯(cuò)的得分情況更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線CF交BD延長線于點(diǎn)C.
(Ⅰ)若∠C=25°,求∠BAF的度數(shù);
(Ⅱ)若AB=AC,CD=2,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com