如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(-1,2)、點B(-4,n)
(1)求此一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.

【答案】分析:(1)先根據(jù)點A求出k值,再根據(jù)反比例函數(shù)解析式求出n值,利用待定系數(shù)法求一次函數(shù)的解析式;
(2)利用三角形的面積差求解.S△AOB=S△AOC-S△BOC=5=
解答:解:(1)將點A(-1,2)代入y=中,2=;
∴m=-2.
∴反比例函數(shù)解析式為y=-.(2分)
將B(-4,n)代入y=-中,n=-;
∴n=
∴B點坐標(biāo)為(-4,).(3分)
將A(-1,2)、B(-4,)的坐標(biāo)分別代入y=kx+b中,
,解得
∴一次函數(shù)的解析式為y=x+

(2)當(dāng)y=0時,x+=0,x=-5;
∴C點坐標(biāo)(-5,0),∴OC=5.
S△AOC=•OC•|yA|=×5×2=5.
S△BOC=•OC•|yB|=×5×=
S△AOB=S△AOC-S△BOC=5=
點評:主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案