在如圖的直角坐標(biāo)系中,已知點(diǎn)A(1,0);B(0,-2),將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-x2+ax+2經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)過(guò)點(diǎn)C作CD垂直于x軸,由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC,根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)得到AB=AC,且∠BAC為直角,可得∠OAB與∠CAD互余,由∠AOB為直角,可得∠OAB與∠ABO互余,根據(jù)同角的余角相等可得一對(duì)角相等,再加上一對(duì)直角相等,利用ASA可證明三角形ACD與三角形AOB全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得AD=OB,CD=OA,由A和B的坐標(biāo)及位置特點(diǎn)求出OA及OB的長(zhǎng),可得出OD及CD的長(zhǎng),根據(jù)C在第四象限得出C的坐標(biāo);
(2)①由已知的拋物線經(jīng)過(guò)點(diǎn)C,把第一問(wèn)求出C的坐標(biāo)代入拋物線解析式,列出關(guān)于a的方程,求出方程的解得到a的值,確定出拋物線的解析式;
②假設(shè)存在點(diǎn)P使△ABP是以AB為直角邊的等腰直角三角形,分三種情況考慮:(i)A為直角頂點(diǎn),過(guò)A作AP1垂直于AB,且AP1=AB,過(guò)P1作P1M垂直于x軸,如圖所示,根據(jù)一對(duì)對(duì)頂角相等,一對(duì)直角相等,AB=AP1,利用AAS可證明三角形AP1M與三角形ACD全等,得出AP1與P1M的長(zhǎng),再由P1為第二象限的點(diǎn),得出此時(shí)P1的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(ii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP2垂直于BA,且BP2=BA,過(guò)P2作P2N垂直于y軸,如圖所示,同理證明三角形BP2N與三角形AOB全等,得出P2N與BN的長(zhǎng),由P2為第三象限的點(diǎn),寫出P2的坐標(biāo),代入拋物線解析式中檢驗(yàn)滿足;(iii)當(dāng)B為直角頂點(diǎn),過(guò)B作BP3垂直于BA,且BP3=BA,如圖所示,過(guò)P3作P3H垂直于y軸,同理可證明三角形P3BH全等于三角形AOB,可得出P3H與BH的長(zhǎng),由P3為第四象限的點(diǎn),寫出P3的坐標(biāo),代入拋物線解析式檢驗(yàn),不滿足,綜上,得到所有滿足題意的P的坐標(biāo).
解答:
解:(1)過(guò)C作CD⊥x軸,垂足為D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,-2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C為第四象限的點(diǎn),
∴C的坐標(biāo)為(3,-1);

(2)①∵拋物線y=-x2+ax+2經(jīng)過(guò)點(diǎn)C,且C(3,-1),
∴把C的坐標(biāo)代入得:-1=-+3a+2,解得:a=,
則拋物線的解析式為y=-x2+x+2;
②存在點(diǎn)P,△ABP是以AB為直角邊的等腰直角三角形,
(i)若以AB為直角邊,點(diǎn)A為直角頂點(diǎn),
則延長(zhǎng)CA至點(diǎn)P1使得P1A=CA,得到等腰直角三角形ABP1,過(guò)點(diǎn)P1作P1M⊥x軸,如圖所示,

∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(-1,1),經(jīng)檢驗(yàn)點(diǎn)P1在拋物線y=-x2+x+2上;
(ii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,過(guò)點(diǎn)P2作P2N⊥y軸,如圖,

同理可證△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(-2,-1),經(jīng)檢驗(yàn)P2(-2,-1)也在拋物線y=-x2+x+2上;
(iii)若以AB為直角邊,點(diǎn)B為直角頂點(diǎn),則過(guò)點(diǎn)B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,過(guò)點(diǎn)P3作P3H⊥y軸,如圖,

同理可證△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,-3),經(jīng)檢驗(yàn)P3(2,-3)不在拋物線y=-x2+x+2上;
則符合條件的點(diǎn)有P1(-1,1),P2(-2,-1)兩點(diǎn).
點(diǎn)評(píng):此題屬于二次函數(shù)的綜合題,涉及的知識(shí)有:全等三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,以及等腰直角三角形的性質(zhì)等知識(shí).此題綜合性強(qiáng),難度較大,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想、方程思想與分類討論思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、△ABC在如圖的直角坐標(biāo)系中,寫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′中點(diǎn)A、B關(guān)于y軸對(duì)稱點(diǎn)A′、B′的坐標(biāo)分別是
(-2,4)
(3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、請(qǐng)?jiān)谌鐖D的直角坐標(biāo)系中畫出以A(0,3)、B(-1,0)、C(1,-1)三點(diǎn)為頂點(diǎn)的平行四邊形,并指出第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在方格紙中,以格點(diǎn)連線為邊的三角形叫做格點(diǎn)三角形.如圖,已知△ABC是格點(diǎn)三角形,每個(gè)小正方形的邊長(zhǎng)是1.
(1)在如圖的直角坐標(biāo)系中,寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)在方格紙中畫出與△ABC相似的格點(diǎn)三角形△A′B′C′,并使△ABC與△A/B/C/的相似比為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大豐市一模)在如圖的直角坐標(biāo)系中,已知點(diǎn)A(1,0);B(0,-2),將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-
12
x2+ax+2經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個(gè)頂點(diǎn)坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個(gè)單位長(zhǎng)度,再向
平移
2
2
個(gè)單位長(zhǎng)度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案