【題目】若等腰三角形兩邊長(zhǎng)分別為3和5,則它的周長(zhǎng)是 .
【答案】11或13
【解析】解:有兩種情況:①腰長(zhǎng)為3,底邊長(zhǎng)為5,三邊為:3,3,5可構(gòu)成三角形,周長(zhǎng)=3+3+5=11;
②腰長(zhǎng)為5,底邊長(zhǎng)為3,三邊為:5,5,3可構(gòu)成三角形,周長(zhǎng)=5+5+3=13.
所以答案是:11或13.
【考點(diǎn)精析】利用三角形三邊關(guān)系和等腰三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊;等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 因?yàn)?2=25,所以5是25的算術(shù)平方根
B. 因?yàn)?-5)2=25,所以-5是25的算術(shù)平方根
C. 因?yàn)?±5)2=25,所以5和-5都是25的算術(shù)平方根
D. 以上說法都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形是( )
A. 五邊形B. 六邊形C. 七邊形D. 八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對(duì)自己做錯(cuò)題進(jìn)行整理、分析、改正”(選項(xiàng)為:很少、有時(shí)、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為________, =________%, =________%,“常常”對(duì)應(yīng)扇形的圓心角的度數(shù)為__________;
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有3200名學(xué)生,請(qǐng)你估計(jì)其中“總是”對(duì)錯(cuò)題進(jìn)行整理、分析、改正的
學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=2,AD=1,∠ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕交CD邊于點(diǎn)E.
(1)求證:四邊形BCED′是菱形;
(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,必然事件是
A. 早晨的太陽從東方升起 B. 6月1日晚上能看到月亮
C. 打開電視,正在播放新聞 D. 任意拋一枚均勻的硬幣,正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1、x2,且x1≠x2,有下列結(jié)論:
①x1=2,x2=3;②m>-;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com