【題目】如圖,在ABCD中,對角線AC的垂直平分線分別交AD,BC于點E,F(xiàn),連接CE,若△CED的周長為6,則ABCD的周長為( )

A.6
B.12
C.18
D.24

【答案】B
【解析】∵四邊形ABCD是平行四邊形,

∴DC=AB,AD=BC,

∵AC的垂直平分線交AD于點E,

∴AE=CE,

∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,

ABCD的周長=2×6=12;

所以答案是:B.

【考點精析】認真審題,首先需要了解線段垂直平分線的性質(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等),還要掌握平行四邊形的性質(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1計算:;

(2)解不等式組

請結合題意填空,完成本題的解答:

解不等式(1),______________.

解不等式(2),_______________.

把不等式(1)(2)的解集在數(shù)軸上表示出來

∴原不等式組的解集為_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(02.

(1)對稱中心的坐標;

(2)寫出頂點B, C, B1 , C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列3×3的網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)請在圖1中選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)請在圖2中選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)請在圖3中選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,平分,過點于點于點,作的平分線于點,交于點,若,下列結論:

;②;③;④;⑤.其中正確的是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,AE平分∠BAD,CDAE相交于點F,CFE=E,試說明ABDC,把下面的說理過程補充完整.

證明:∵ADBC(已知)

∴∠2=E___________________________

AE平分∠BAD(已知)

∴∠1=2 _________________________

∴∠1=E___________________________

∵∠CFE=E(已知)

∴∠1=____________________________

ABCD_________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC是等邊三角形,D、E分別為邊BC和AC上的點,且BD=CE,過D作BE的平行線,過E作BC的平行線,它們交于點F,連接AF.

(1)求證:△ABE≌△CAD;

(2)試判斷△ADF的形狀,并說明理由;

(3)若將D、E分別移為邊CB的延長線和AC的延長線上的點,其它條件不變(如圖②),則△ADF的形狀是否改變,說明理由.

查看答案和解析>>

同步練習冊答案