【題目】如圖,過拋物線y= x2﹣2x上一點(diǎn)A作x軸的平行線,交拋物線于另一點(diǎn)B,交y軸于點(diǎn)C,已知點(diǎn)A的橫坐標(biāo)為﹣2.
(1)求拋物線的對稱軸和點(diǎn)B的坐標(biāo);
(2)在AB上任取一點(diǎn)P,連結(jié)OP,作點(diǎn)C關(guān)于直線OP的對稱點(diǎn)D;
①連結(jié)BD,求BD的最小值;
②當(dāng)點(diǎn)D落在拋物線的對稱軸上,且在x軸上方時(shí),求直線PD的函數(shù)表達(dá)式.
【答案】
(1)
解:由題意A(﹣2,5),對稱軸x=﹣ =4,
∵A、B關(guān)于對稱軸對稱,
∴B(10,5).
(2)
解:①如圖1中,
由題意點(diǎn)D在以O(shè)為圓心OC為半徑的圓上,
∴當(dāng)O、D、B共線時(shí),BD的最小值=OB﹣OD= ﹣5=5 ﹣5.
②如圖中,
當(dāng)點(diǎn)D在對稱軸上時(shí),在Rt△ODE中,OD=OC=5,OE=4,
∴DE= = =3,
∴點(diǎn)D的坐標(biāo)為(4,3).
設(shè)PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,
∴x= ,
∴P( ,5),
∴直線PD的解析式為y=﹣ x+ .
【解析】(1)思想確定點(diǎn)A的坐標(biāo),利用對稱軸公式求出對稱軸,再根據(jù)對稱性可得點(diǎn)B坐標(biāo);(2)①由題意點(diǎn)D在以O(shè)為圓心OC為半徑的圓上,推出當(dāng)O、D、B共線時(shí),BD的最小值=OB﹣OD;②當(dāng)點(diǎn)D在對稱軸上時(shí),在Rt△OD=OC=5,OE=4,可得DE= = =3,求出P、D的坐標(biāo)即可解決問題;
【考點(diǎn)精析】通過靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-2x-3與x軸相交于A、B兩點(diǎn),其頂點(diǎn)為M,將此拋物線在x軸下方的部分沿x軸翻折,其余部分保持不變,得到一個(gè)新的圖象.如圖,當(dāng)直線y=-x+n與此圖象有且只有兩個(gè)公共點(diǎn)時(shí),則n的取值范圍為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元. ①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民李星星在上周星期五以每股 11.2 元買了一批股票,下表為本周星期一 到星期五該股票的漲跌情況
求:(1)本周星期三收盤時(shí),每股的錢數(shù).
(2)李星星本周內(nèi)哪一天把股票拋出比較合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以平行四邊形ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點(diǎn)E在平行四邊形內(nèi)部,連接AE、BE,則∠AEB的度數(shù)是( )
A、120° B、135° C、150° D、45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,點(diǎn)O是邊AC上的一個(gè)動點(diǎn),過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:OE=OF.
(2)試確定點(diǎn)O在邊AC上的位置,使四邊形AECF是矩形,并加以證明.
(3)在(2)的條件下,且△ABC滿足 ____________時(shí),矩形AECF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有理數(shù)大小關(guān)系判斷正確的是( 。
A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用火柴棒按下列方式搭三角形:
(1)填寫下面表
三角形個(gè)數(shù) | 1 | 2 | 3 | 4 | … |
火柴棒根數(shù) | … |
(2)搭10個(gè)這樣的三角形需要 根火柴棒.
(3)搭n個(gè)這樣的三角形需要 根火柴棒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P.
(1)如圖①,若∠COB=2∠PCB,求證:直線PC是⊙O的切線;
(2)如圖②,若點(diǎn)M是AB的中點(diǎn),CM交AB于點(diǎn)N,MNMC=36,求BM的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com