【題目】如圖,,的垂直平分線交于,交于.
(1)若,求的度數(shù);
(2)若,的周長17,求的周長.
【答案】(1)30;(2)27.
【解析】
(1)首先利用三角形內(nèi)角和求得∠ABC的度數(shù),然后減去∠ABD的度數(shù)即可得到答案;
(2)將△ABC的周長轉(zhuǎn)化為AB+AC+BC的長即可求得.
(1)∵AB=AC,
∴△ABC是等腰三角形,
∵∠A=40,
∴∠ABC=∠C=×(18040)=70,
∵DE所在的直線是AB的垂直平分線
∴△ABD是等腰三角形,
∴∠ABD=∠A=40,
∴∠DBC=∠ABC∠ABD=7040=30;
(2)∵△ABD是等腰三角形
∴AD=BD,
∵C△CBD=BC+CD+BD=17,
∴BC+CD+AD=BC+AC=17,
∵AE=5
∴AB=2AE=10,
∴C△ABC=AB+BC+AC=10+17=27.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(1,0)及點B.
(1)求m的值與一次函數(shù)的解析式;
(2)拋物線上是否存在一點P,使S△ABP=S△ABC?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了美化綠化校園,計劃購買甲,乙兩種花木共100棵綠化操場,其中甲種花木每棵60元,乙種花木每棵80元.
(1)若購買甲,乙兩種花木剛好用去7200元,則購買了甲,乙兩種花木各多少棵?
(2)如果購買乙種花木的數(shù)量不少于甲種花木的數(shù)量,請設(shè)計一種購買方案使所需費用最低,并求出該購買方案所需總費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是AB的中點,點F是BC延長線上一點,連接DF,交AC于點E,連接BE,∠A=∠ABE
(1)求證:ED平分∠AEB;
(2)若AB=AC,∠A=38°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,在上取點,延長到,使得;在上取一點,延長到,使得;…,按此做法進(jìn)行下去,第n個等腰三角形的底角的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖像與軸、軸分別交于點、,以為邊在第二象限內(nèi)作等邊.
(1)求點的坐標(biāo);
(2)在第二象限內(nèi)有一點,使,求點的坐標(biāo);
(3)將沿著直線翻折,點落在點處;再將繞點順時針方向旋轉(zhuǎn)15°,點落在點處,過點作軸于.求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是( )
A.35B.C.25D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個粒子在軸上及第一象限內(nèi)運動,第1次從運動到,第2次從運動到,第3次從運動到,它接著按圖中箭頭所示的方向運動.則第2019次時運動到達(dá)的點為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com