【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(﹣3,0)、B(5,0)、C(0,5)三點,O為坐標原點

(1)求此拋物線的解析式;

(2)若把拋物線y=ax2+bx+c(a≠0)向下平移個單位長度,再向右平移n(n>0)個單位長度得到新拋物線,若新拋物線的頂點M在△ABC內,求n的取值范圍;

(3)設點P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長.

【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的長為7或17.

【解析】

試題分析:(1)根據(jù)A、B、C三點的坐標,利用待定系數(shù)法可求得拋物線的解析式即可;(2)可先求得拋物線的頂點坐標,再利用坐標平移,可得平移后的坐標為(1+n,1),再由B、C兩點的坐標可求得直線BC的解析式,可求得y=1時,對應的x的值,從而可求得n的取值范圍;(3)當點P在y軸負半軸上和在y軸正半軸上兩種情況,根據(jù)這兩種情況分別求得PC的長即可.

試題解析:(1)把A、B、C三點的坐標代入函數(shù)解析式可得,

解得,

∴拋物線解析式為y=﹣x2+x+5;

(2)∵y=﹣x2+x+5,

∴拋物線頂點坐標為(1,),

∴當拋物線y=ax2+bx+c(a≠0)向下平移個單位長度,再向右平移n(n>0)個單位長度后,得到的新拋物線的頂點M坐標為(1+n,1),

設直線BC解析式為y=kx+m,把B、C兩點坐標代入可得,解得,

∴直線BC的解析式為y=﹣x+5,

令y=1,代入可得1=﹣x+5,解得x=4,

∵新拋物線的頂點M在△ABC內,

∴1+n<4,且n>0,解得0<n<3,

即n的取值范圍為0<n<3;

(3)當點P在y軸負半軸上時,如圖1,過P作PD⊥AC,交AC的延長線于點D,

由題意可知OB=OC=5,

∴∠CBA=45°,

∴∠PAD=∠OPA+∠OCA=∠CBA=45°,

∴AD=PD,

在Rt△OAC中,OA=3,OC=5,可求得AC=

設PD=AD=m,則CD=AC+AD=+m,

∵∠ACO=∠PCD,∠COA=∠PDC,

∴△COA∽△CDP,

,即,

得m=,PC=17;

可求得PO=PC﹣OC=17﹣5=12,

如圖2,在y軸正半軸上截取OP′=OP=12,連接AP′,

則∠OP′A=∠OPA,

∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,

∴P′也滿足題目條件,此時P′C=OP′﹣OC=12﹣5=7,

綜上可知PC的長為7或17.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.

(1)求△AOB的周長;

(2)設AQ=t>0,試用含t的代數(shù)式表示點P的坐標;

(3)當動點P,Q在直線l上運動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:

①6a+3b+2c=0;

②當m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學的部分學生參加該市中學生知識競賽,小王同學統(tǒng)計了所有參賽同學的成績,并且根據(jù)學過的知識繪制了統(tǒng)計圖.請根據(jù)圖中提供的信息回答問題:

(1)該校參加本競賽的同學共_________人;

(2)若成績在6分以上的(6)的同學獲獎,則該校參賽同學的獲獎率為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x22xm0沒有實數(shù)根,試判斷關于x的方程x22mxm(m1)0的根的情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下面給出的數(shù)軸中A表示1,B表示﹣2.5,回答下面的問題:

(1)AB之間的距離是   

(2)觀察數(shù)軸,與點A的距離為5的點表示的數(shù)是:   ;

(3)若將數(shù)軸折疊,使A點與﹣2表示的點重合,則B與數(shù)   表示的點重合

(4)若數(shù)軸上M、N兩點之間的距離為2016(MN的左側),且M、N兩點經過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是:M    N   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xm=3,xn=4,則xm+2n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DE∥BCCD∠ACB的平分線,∠B70°,∠ACB50°,求∠EDC∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+1與x軸僅有一個公共點A,經過點A的直線交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.

(1)求這條拋物線對應的函數(shù)解析式;

(2)求直線AB對應的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面內,⊙O的半徑為2cm,圓心O到直線l的距離為3cm,則直線l與⊙O的位置關系是(  )
A.內含
B.相交
C.相切
D.相離

查看答案和解析>>

同步練習冊答案