【題目】我校數(shù)學(xué)興趣小組的同學(xué)要測量建筑物的高度,如圖,建筑物前有一段坡度為的斜坡,小明同學(xué)站在斜坡上的點(diǎn)處,用測角儀測得建筑物屋頂的仰角為,接著小明又向下走了米,剛好到達(dá)坡底處,這時測到建筑物屋頂的仰角為,、、、、、在同一平面內(nèi).若測角儀的高度米,則建筑物的高度約為( ).(精確到0.1米,參考數(shù)據(jù):,,)
A.38.6B.39.0C.40.0D.41.5
【答案】D
【解析】
設(shè)CD=x米.延長AB交DE于H,作AM⊥CD于M,FN⊥CD于N,求出BH=4(米),EH=8(米),由矩形的性質(zhì)得出AM=DH,AH=DM,FN=DE,FE=DN=1.5(米),在Rt△CFN中,求出CN=FN=DE=(x-1.5)(米),AM=DH=(8+x-1.5)(米),CM=(x-5.5)(米),在Rt△ACM中,由AM=,得出方程,解方程即可.
解:如圖,延長AB交DE于H,作AM⊥CD于M,FN⊥CD于N,設(shè)CD=x米.
∵在Rt△BHE中,BE=4米,BH:EH=1:2,
∴BH=4(米),EH=8(米),
∵四邊形AHDM是矩形,四邊形FEDN是矩形,
∴AM=DH,AH=DM,FN=DE,FE=DN=1.5(米),
∵在Rt△CFN中,∠CFN=45°,
∴CN=FN=DE=(x-1.5)(米),
∵AM=DH=(8+x-1.5)(米),CM=(x-5.5)(米),
∵在Rt△ACM中,∠CAM=37°,
∴AM=,
∴8+x-1.5≈,
∴x≈41.5(米),
∴CD≈41.5米,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形AOBC中,OB=4,OA=3.分別以OB、OA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個動點(diǎn)(不與B、C重合).過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.
(1)當(dāng)點(diǎn)F運(yùn)動到邊BC的中點(diǎn)時,點(diǎn)E的坐標(biāo)為__________;
(2)連接EF,求∠EFC的正切值;
(3)如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求BG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點(diǎn),AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點(diǎn)F,若∠ABE=30°,AE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)的點(diǎn)和點(diǎn),給出如下定義:點(diǎn)為平面內(nèi)的一點(diǎn),若點(diǎn)使得是以為頂角且小于90°的等腰三角形,則稱點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).如圖,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn).
(1)已知點(diǎn),在點(diǎn),中,是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)的是___________.
(2)已知點(diǎn),點(diǎn)在直線上,若點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),求實數(shù)的取值范圍.
(3)點(diǎn)是軸上的動點(diǎn),,點(diǎn)是以為圓心,2為半徑的圓上一個動點(diǎn),且滿足.直線與軸和軸分別交于點(diǎn),若線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在等腰△ABC 中,AB=AC,點(diǎn) D,E 分別為 BC,AB 的中點(diǎn),連接 AD.在線段 AD 上任取一點(diǎn) P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當(dāng)點(diǎn) P 與點(diǎn) D 重合時,x 的值為 0),PB+PE=y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y 隨自變量x 的變化而變化的規(guī)律進(jìn)行了探究. 下面是小明的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、計算,得到了 x 與 y 的幾組值,如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | 5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
說明:補(bǔ)全表格時,相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐標(biāo)系(圖 2),描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時點(diǎn) P 在圖 1 中的什么位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把三角形紙片折疊,使的對應(yīng)點(diǎn)在上,點(diǎn)的對應(yīng)點(diǎn)在上,折痕分別為,,若,,,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形為矩形,連接,,點(diǎn)在邊上.
(1)如圖①,若,,求的面積;
(2)如圖②,延長至點(diǎn),使得,連接并延長交于點(diǎn),過點(diǎn)作于點(diǎn),連接,求證:;
(3)如圖③,將線段繞點(diǎn)旋轉(zhuǎn)一定的角度()得到線段,連接,點(diǎn)始終為的中點(diǎn),連接.已知,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊負(fù)責(zé)完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨(dú)完成此項工程比乙工程隊單獨(dú)完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費(fèi)7000元,乙工程隊每天需工程費(fèi)5000元,若甲隊先單獨(dú)工作若干天,再由甲乙兩工程隊合作完成剩余的任務(wù),支付工程隊總費(fèi)用不超過79000元,則兩工程隊最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是正方形ABCD邊CD上一點(diǎn),連接AM,作DE⊥AM于點(diǎn)E,BF⊥AM于點(diǎn)F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com