如圖,已知∠AOB=40°,點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)分別為C、D,CD交OA、OB于M、N兩點(diǎn),則∠MPN的度數(shù)是


  1. A.
    70°
  2. B.
    80°
  3. C.
    90°
  4. D.
    100°
D
分析:要求∠MPN的度數(shù),要在△MPN中進(jìn)行,根據(jù)軸對(duì)稱的性質(zhì)和等腰三角形的性質(zhì)找出與∠CPD的關(guān)系,利用已知∠AOB=40°可求出∠CPD,答案可得.
解答:解:∵P關(guān)于OA、OB的對(duì)稱
∴OA垂直平分PC,OB垂直平分PD
∴CM=PM,PN=DN
∴∠PMN=2∠C,∠PNM=2∠D,
∵∠PRM=∠PTN=90°,
∴在四邊形OTPR中,
∴∠CPD+∠O=180°,
∴∠CPD=180°-40°=140°
∴∠C+∠D=40°
∴∠MPN=180°-40°×2=100°
故選D.
點(diǎn)評(píng):此題考查了軸對(duì)稱的性質(zhì)發(fā)現(xiàn)等腰三角形.在計(jì)算的過程中運(yùn)用了四邊形的內(nèi)角和和三角形的內(nèi)角和定理及其推論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對(duì)稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對(duì)稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對(duì)稱的△A3B3C3
②△ABC與△A3B3C3成軸對(duì)稱嗎?如果成,請(qǐng)畫出對(duì)稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網(wǎng)
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數(shù);
(2)若∠AOC=x°,∠EOF=y°.則請(qǐng)用x的代數(shù)式來表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點(diǎn)N為OB上一個(gè)定點(diǎn).通過畫圖可以知道:當(dāng)∠AOB=45°時(shí),在射線OC上存在點(diǎn)P,使△ONP成為等腰三角形,且符合條件的點(diǎn)有三個(gè),即P1(頂點(diǎn)為P2),P2(頂點(diǎn)為0),P3(頂點(diǎn)為N).
試問:當(dāng)∠AOB分別為銳角、直角、鈍角時(shí),在射線OC上使△ONP成為等腰三角形的點(diǎn)P是否仍然存在三個(gè)?請(qǐng)分別畫出簡(jiǎn)圖并加以說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案