【題目】某公司有AB兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時可搭載乘客350人.

A型客車

B型客車

載客量(人/輛)

40

25

日租金(元/輛)

320

200

車輛數(shù)(輛)

a

b

1)求a、b的值;

2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.

①最多能租用A型客車多少輛?

②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.

【答案】1 ;2)①最多能租用A型客車4; ②最省錢的方案為:租用A型客車3輛,則計劃租用B型車3.

【解析】

(1)根據(jù)題意可知A型車數(shù)量+B型車數(shù)量=11,A型載客量+B型載客量=350,據(jù)此列出方程組求解即可;

(2)①根據(jù)題意,表示出租車總費用,列出不等式即可解決;

(3)根據(jù)載客不能少于195人,列出不等式,結(jié)合①即可確定出方案,繼而可得最省錢的方案.

(1)由題意得:,

解得,

答:a=5,b=6;

(2)①設計劃租用A型客車x輛,則計劃租用B型客車(6-x)輛,

由題意得:

,解得,

∵x取非負整數(shù),∴x的最大值為4

答:最多能租用A型客車4輛;

由題意得:,解得

,

∵x取正整數(shù),∴x=34,

方案1:租用A型客車3輛,則計劃租用B型車3,費用為3×320+3×200=1560()

方案2:租用A型客車4輛,則計劃租用B型車2,費用為4×320+2×200=1680();

最省錢的方案為:租用A型客車3輛,則計劃租用B型車3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一矩形OABC放在直角坐標系中,O為坐標原點,點A在y軸正半軸上,點E是邊AB上的一個動點(不與點A、B重合),過點E的反比例函數(shù)y= (x>0)的圖象與邊BC交與點F.

(1)若△OAE、△OCF的面積分別為S1、S2 , 且S1+S2=2,求k的值;
(2)在(1)的結(jié)論下,當OA=2,OC=4時,求三角形OEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2 , 后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例的圖象相交于A、B兩點,則圖中使反比例函數(shù)的值小于一次函數(shù)的值的x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解一元一次不等式或不等式組

13(x+2)-8≥1-2(x-1)

2

3求不等式組的非負整數(shù)解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x,y的二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連結(jié)PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結(jié)CQ.若PA∶PB∶PC=3∶4∶5,連結(jié)PQ,試判斷△PQC的形狀(

A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點,E、F分別在AC、BC上,且DE⊥DF.

求證:AE2+BF2=EF2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(tan60°)1× ﹣|﹣ |+23×0.125.

查看答案和解析>>

同步練習冊答案