兩數(shù)相減,如果差等于減數(shù)的相反數(shù),那么下列結(jié)論中,正確的是


  1. A.
    減數(shù)一定是零
  2. B.
    被減數(shù)一定是零
  3. C.
    原來兩數(shù)互為相反數(shù)
  4. D.
    原來兩數(shù)的和等于1
B
分析:先設(shè)出這兩個數(shù),x,y,根據(jù)題意列式x-y=-y,求解即可.
解答:設(shè)這兩個數(shù)為x,y,根據(jù)題意得
x-y=-y,
解得,x=0.
故選B.
點評:本題考查了列代數(shù)式的內(nèi)容,及合并同類項,是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、兩數(shù)相減,如果差等于減數(shù)的相反數(shù),那么下列結(jié)論中,正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面一段:
計算1+5+52+53…+599+5100
觀察發(fā)現(xiàn),上式從第二項起,每項都是它前面一項的5倍,如果將上式各項都乘以5,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.
解:設(shè)S=1+5+52+53…+599+5100,①
則5S=5+52+…+5100+5101,②
②-①得4S=5101-1,則S=
5101-1
4

上面計算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于5),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.
下面請你觀察算式1+
1
2
+
1
22
+
1
23
+…+
1
22000
是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計算上式的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014湘教版七年級上冊(專題訓(xùn)練 狀元筆記)數(shù)學(xué):第一章 有理數(shù) 具有相反意義的量 湘教版 題型:044

閱讀下面一段:

計算1+5+52+53…+599+5100

觀察發(fā)現(xiàn),上式從第二項起,每項都是它前面一項的5倍,如果將上式各項都乘以5,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.

解:設(shè)S=1+5+52+53…+599+5100,①

則5S=5+52+…+5100+5101,②

②-①得4S=5101-1,則S=

上面計算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于5),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.

下面請你觀察算式1++…+是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計算上式的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面一段:
計算1+5+52+53…+599+5100
觀察發(fā)現(xiàn),上式從第二項起,每項都是它前面一項的5倍,如果將上式各項都乘以5,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.
解:設(shè)S=1+5+52+53…+599+5100,①
則5S=5+52+…+5100+5101,②
②-①得4S=5101-1,則S=數(shù)學(xué)公式
上面計算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于5),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.
下面請你觀察算式1+數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計算上式的結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案