【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(5,1). ①畫出△ABC關于y軸對稱的△A1B1C1 , 并寫出點C1的坐標;
②連結BC1 , 在坐標平面的格點上確定一個點P,使△B C1P是以B C1為底的等腰直角三角形,畫出△B C1P,并寫出所有P點的坐標.

【答案】解:①如圖,△A1B1C1 , 即為所求作三角形,點C1的坐標為(﹣5,1);
②如圖,點P的坐標為(﹣1,﹣1)或(﹣3,5)
【解析】①分別作出點A、B、C關于y軸的對稱點,即可得△A1B1C1及C1的坐標;②作出BC1的中垂線,在中垂線上根據(jù)勾股定理逆定理即可確定點P位置.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明合作學習小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點坐標分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點按順時針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請你寫出點A1 , B1的坐標,并判斷A1C和DF的位置關系;
(2)他們將△ABC繞原點按順時針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線y=2 x2+bx+c上,請你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個點旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點P的坐標,請你直接寫出點P的所有坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)∠BAC=40°時,∠BPC=   ,∠BQC=   

(2)BM∥CN時,求∠BAC的度數(shù);

(3)如圖,當∠BAC=120°時,BM、CN所在直線交于點O,直接寫出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張圓心角為45°的扇形紙板剪得一個邊長為1的正方形,則扇形紙板的面積是cm2(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒 個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設移動時間為t秒.

(1)當點P移動到點D時,求出此時t的值;
(2)當t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉(zhuǎn)180°后,三個對應頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”假期,某火車客運站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進站.設旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關系如圖所示.

(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊的旅客都能檢票進站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,AOB為等邊三角形,B(2,0),直線l:y=kx+b經(jīng)過點B,點Cx軸正半軸上的一動點,以線段AC為邊在第一象限作等邊ACD.

(1)直接寫出點A的坐標:A(   ,   ),當直線l經(jīng)過點A時,求直線BA的表達式.

(2)當直線l經(jīng)過點D時,直線與y軸相交于點F,隨著點C的變化,點F的位置是否發(fā)生變化?若沒有變化,求出此時點F的坐標.;若有變化,請說明理由.

(3)當直線與線段OA相交與點E時,如果直線lAOB的面積分為1:2兩部分,求出此時點E的坐標.

(4)若點C的坐標為(4,0)時,直線l與線段AD有交點,請直接寫出此時k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小敏同學想測量一棵大樹的高度.她站在B處仰望樹頂,測得仰角為30°,再往大樹的方向前進4m,測得仰角為60°,已知小敏同學身高(AB)為1.6m,則這棵樹的高度為( )(結果精確到0.1m, ≈1.73).

A.3.5m
B.3.6m
C.4.3m
D.5.1m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù) y=﹣2x﹣2

(1)根據(jù)關系式畫出函數(shù)的圖象

(2)求出圖象與 x 軸、y 軸的交點 A、B 的坐標.

(3)求 A、B 兩點間的距離.

(4)y 的值隨 x 值的增大怎樣變化?

查看答案和解析>>

同步練習冊答案