【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(,0)、(0,4),拋物線經(jīng)過B點,且頂點在直線上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標(biāo)為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標(biāo).
【答案】(1)
(2)在,理由略
(3)M的坐標(biāo)為(, )
【解析】試題分析:(1)已知了拋物線上A、B點的坐標(biāo)以及拋物線的對稱軸方程,可用待定系數(shù)法求出拋物線的解析式.
(2)首先求出AB的長,將A、B的坐標(biāo)向右平移AB個單位,即可得出C、D的坐標(biāo),再代入拋物線的解析式中進(jìn)行驗證即可.
(3)根據(jù)C、D的坐標(biāo),易求得直線CD的解析式;那么線段MN的長實際是直線BC與拋物線的函數(shù)值的差,可將x=t代入兩個函數(shù)的解析式中,得出的兩函數(shù)值的差即為l的表達(dá)式,由此可求出l、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出l取最大值時,點M的坐標(biāo).
解:(1)∵拋物線y=+bx+c的頂點在直線x=上,
∴可設(shè)所求拋物線對應(yīng)的函數(shù)關(guān)系式為y=+m
∵點B(0,4)在此拋物線上,
∴4=×+m
∴m=﹣
∴所求函數(shù)關(guān)系式為:y=﹣=﹣x+4
(2)在Rt△ABO中,OA=3,OB=4,
∴AB==5
∵四邊形ABCD是菱形
∴BC=CD=DA=AB=5
∴C、D兩點的坐標(biāo)分別是(5,4)、(2,0);
當(dāng)x=5時,y=×52﹣×5+4=4
當(dāng)x=2時,y=×22﹣×2+4=0
∴點C和點D在所求拋物線上;
(3)設(shè)直線CD對應(yīng)的函數(shù)關(guān)系式為y=kx+b′,
則;
解得:;
∴y=x﹣
∵M(jìn)N∥y軸,M點的橫坐標(biāo)為t,
∴N點的橫坐標(biāo)也為t;
則yM=﹣t+4,yN=t﹣,
∴l(xiāng)=yN﹣yM=t﹣﹣(﹣t+4)=﹣+t﹣=﹣+
∵﹣<0,
∴當(dāng)t=時,l最大=,yM=﹣t+4=.
此時點M的坐標(biāo)為(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則下列四個結(jié)論:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中結(jié)論正確的序號為( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的括號里:
﹣8,0.275, ,0,﹣1.04,﹣(﹣3),﹣ ,|﹣2|
正數(shù)集合{…}
負(fù)整數(shù)集合{…}
分?jǐn)?shù)集合{…}
負(fù)數(shù)集合{…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件羽絨服先按成本提高50%標(biāo)價,再以8折(標(biāo)價的80%)出售,結(jié)果獲利250元.若設(shè)這件羽絨服的成本是x元,根據(jù)題意,可得到的方程是( )
A.x(1+50%)×80%=x﹣250
B.x(1+50%)×80%=x+250
C.(1+50%x)×80%=x﹣250
D.(1+50%x)×80%=250﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心,OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=2CDOE;
(3)若,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生家長對孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長進(jìn)行問卷調(diào)查,發(fā)出問卷150份,每位學(xué)生家長1份,每份問卷僅表明一種態(tài)度,將回收的問卷進(jìn)行整理(假設(shè)回收的問卷都有效),并繪制了如圖所示的兩幅不完整的統(tǒng)計圖. 根據(jù)以上信息解答下列問題:
(1)回收的問卷數(shù)為份,“嚴(yán)加干涉”部分對應(yīng)扇形的圓心角度數(shù);
(2)把條形統(tǒng)計圖補充完整;
(3)若將“從來不管”和“稍加詢問”視為“管理不嚴(yán)”,已知全校共1200名學(xué)生,請估計該校對孩子使用手機(jī)“管理不嚴(yán)”的家長有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com