【題目】已知反比例函數,下列結論中不正確的是( )
A.圖象必經過點 B.隨 的增大而增大
C.圖象在第二,四象限內D.若,則
科目:初中數學 來源: 題型:
【題目】如圖,AB為的直徑,C、D為上兩點,且,垂足為F,直線CF交AB的延長線于點E,連接AC
(1)判斷EF與的位置關系,并說明理由:
(2)若,的半徑為4,求線段CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國古代著名數學經典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.如圖,已知弦尺,弓形高寸,(注:1尺=10寸)問這塊圓柱形木材的直徑是( )
A.13寸B.6.5寸C.20寸D.26寸
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商家計劃從廠家采購空調和冰箱兩種產品共20臺,空調的采購單價y1(元/臺)與采購數量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數);冰箱的采購單價y2(元/臺)與采購數量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數).
(1)經商家與廠家協(xié)商,采購空調的數量不少于冰箱數量的,且空調采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調和冰箱,且全部售完.在(1)的條件下,問采購空調多少臺時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,點P是線段AD上任意一點,點Q為BC上一點,且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當PD=5時四邊形PBQD為菱形.求AD為多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-1,3),B(-2,1),C(-3,1).
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1點的坐標及sin∠B1C1A1的值;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標;
(3)若點D為線段BC的中點,直接寫出經過(2)的變化后點D的對應點D2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標為3,則下列結論:①k=6;②A點與B點關于原點O中心對稱;③關于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標為6,則△AOC的面積為8,其中正確結論的個數( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,E在AB上,、都為等腰直角三角形,,連接DB,以DE、DB為邊作平行四邊形DBFE,連接FC、DC.
(1)求證:;;
(2)將圖①中繞A點順時針旋轉,其它條件不變,如圖②,(1)中的結論是否成立?說明理由.
(3)將圖①中的繞A點順時針旋轉,,其它條件不變,當四邊形DBFE為矩形時,直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com