【題目】如圖所示,在△ABC中,∠A=∠B=30°,CD平分∠ACB,M、N分別是BC、AC的中點.圖中等于60°的角有( 。﹤.
A. 3 B. 4 C. 5 D. 6
【答案】D
【解析】
由題意可得△ABC是等腰三角形,且M、N分別是BC、AC的中點,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可求BM=MD=MC,CN=AN=DN,可證△CMD,△CND是等邊三角形,即可求等于60°的角的個數(shù).
∵∠B=∠A=30°,∴BC=AC.
又∵CD平分∠BCA,∴CD⊥AB.
∵CD⊥AB,M、N分別是BC、AC的中點,∴BM=MC=MD,DN=CN=NA,∴∠B=∠MDB=30°,∴∠CMD=∠B+∠MDB=60°.
∵MC=MD,∠CMD=60°,∴△MCD是等邊三角形,∴∠MCD=∠MDC=∠DMC=60°.
同理可證:△MCD是等邊三角形,∴∠CND=∠NCD=∠CDN=60°,∴等于60°的角有6個.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝“六一”兒童節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校的人數(shù)多于乙校的人數(shù),且甲校的人數(shù)不足90人)準備統(tǒng)一購買服裝參加演出;下面是某服裝廠給出的演出服裝的價格表
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
(1)如果兩所學(xué)校分別單獨購買服裝一共應(yīng)付5000元,甲、乙兩所學(xué)校各有多少學(xué)生準備參加演出?
(2)如果甲校有10名同學(xué)抽調(diào)去參加書法繪畫比賽不能參加演出,請你為兩所學(xué)校設(shè)計一種最省錢的購買服裝方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧州市特產(chǎn)批發(fā)市場有龜苓膏粉批發(fā),其中A品牌的批發(fā)價是每包20元,B品牌的批發(fā)價是每包25元,小王需購買A,B兩種品牌的龜苓膏粉共1000包.
(1)若小王按需購買A,B兩種品牌龜苓膏粉共用22000元,則各購買多少包?
(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請求出y與x之間的函數(shù)關(guān)系式;
(3)在(2)中,小王共用了20000元,他計劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費8元,若每包銷售價格A品牌比B品牌少5元,請你幫他計算,A品牌的龜苓膏粉每包定價不低于多少元時才不虧本?(運算結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點D、E、F,且∠ACB=90°,AB=5,BC=3,點P在射線AC上運動,過點P作PH⊥AB,垂足為H.
(1)直接寫出線段AC、AD及⊙O半徑的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)PH與⊙O相切時,求相應(yīng)的y值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是段AB的“2倍點”.
(1)線段的中點__________這條線段的“2倍點”;(填“是”或“不是”)
(2)若AB=15cm,點C是線段AB的“2倍點”.求AC的長;
(3)如圖②,已知AB=20cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動.點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動.點P、Q同時出發(fā),當(dāng)其中一點到達終點時,運動停止,設(shè)移動的時間為t(s),當(dāng)t=_____________s時,點Q恰好是線段AP的“2倍點”.(請直接寫出各案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面相同的紙牌A、B、C、D其正面分別畫有正三角形、圓、平行四邊形、正五邊形,某同學(xué)把這四張牌背面向上洗勻后摸出一張,放回洗勻再摸出一張.
(1)請用樹狀圖或表格表示出摸出的兩張牌所有可能的結(jié)果;
(2)求摸出兩張牌的牌面圖形都是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的ABC中,按以下步驟作圖:
①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M,N;
②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A.90°
B.95°
C.100°
D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中AD∥BC,對角線AC、BD相交于點O,若AO:CO=2:3,AD=4,則BC等于( 。
A.12
B.8
C.7
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com