【題目】如圖,已知A0,4),B(﹣2,2),C3,0).

1)作ABC關(guān)于x軸對稱的A1B1C1;

2)求A1B1C1的面積與A1B1邊上的高;

3)在x軸上有一點P,使PA+PB最小,求PA+PB的最小值.

【答案】答案見解析.

【解析】

1)依據(jù)軸對稱的性質(zhì),即可作ABC關(guān)于x軸對稱的A1B1C1;

2)依據(jù)割補法即可得到A1B1C1的面積,進而得出A1B1邊上的高;

3)連接AB1,交x軸于點P,則BP=B1PPA+PB的最小值等于AB1的長,運用勾股定理即可得到結(jié)論.

解:(1)如圖所示,A1B1C1即為所求;


2A1B1C1的面積=

A1B1= ,

A1B1邊上的高=

(3)如圖所示,連接AB1,交x軸于點P,則BP=B1P
PA+PB的最小值等于AB1的長,

AB1=,

PA+PB的最小值等于 .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為等邊ABC外一點,AH垂直平分PC于點H,∠BAP的平分線交PC于點D

1)求證:DPDB;

2)求證:DA+DBDC;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDE⊥AC分別交AC、AB的延長線于點E、F.

(1)求證:EF⊙O的切線;

(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點P,AP=2,BP=6,APC=30°,則CD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點.

(1)求證:BC=DE;

(2)連接AD、BE,若∠BAC=C,求證:四邊形DBEA是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的個數(shù)是

若代數(shù)式有意義,則x的取值范圍為x≤1x≠0

我市生態(tài)旅游初步形成規(guī)模,2012年全年生態(tài)旅游收入為302 600 000元,保留三個有效數(shù)字用科學記數(shù)法表示為3.03×108元.

若反比例函數(shù)m為常數(shù)),當x0時,yx增大而增大,則一次函數(shù)y=﹣2x+m的圖象一定不經(jīng)過第一象限.

若函數(shù)的圖象關(guān)于y軸對稱,則函數(shù)稱為偶函數(shù),下列三個函數(shù):y=3,y=2x+1y=x2中偶函數(shù)的個數(shù)為2個.

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字、、的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

1)若從中任取一個球,球上的漢字剛好是的概率為多少?

2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖的方法,求出甲取出的兩個球上的漢字恰能組成靈秀鄂州的概率P1;

3)乙從中任取一球,記下漢字后再放回袋中,然后再從中任取一球,記乙取出的兩個球上的漢字恰能組成靈秀鄂州的概率為P2,指出P1,P2的大小關(guān)系(請直接寫出結(jié)論,不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,這個圖案是3世紀我國漢代數(shù)學家趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為趙爽弦圖.已知AE=3,BE=2,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點的機會均等),則恰好落在正方形EFGH內(nèi)的概率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在探究兩個三角形滿足兩邊和其中一邊的對角對應相等(“SSA”)是否能判定兩個三角形全等時,我們設(shè)計不同情形進行探究:

1)例如,當∠B 是銳角時,如圖 ,BC=EF,∠B=∠E,在射線 EM 上有點 D,使 DF=AC,用尺規(guī)畫出符合條件的點 D,則△ABC 和△DEF 的關(guān)系是( );

A.全等 B. 不全等 C. 不一定全等

我們進一步發(fā)現(xiàn)如果能確定這兩個三角形的形狀,那么SSA是成立的.

2)例如,已知:如圖,在銳角△ABC 和銳角△DEF 中,AC=DF,BC=EF,∠B=E. 求證:△ABC≌△DEF.

查看答案和解析>>

同步練習冊答案