【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小明與同學(xué)們?cè)谏狡碌钠履_A處測(cè)得廣告牌底部D的仰角為53°,沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度,AB=10米,AE=21米,求廣告牌CD的高度.(測(cè)角器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,cos53°≈0.60)
【答案】
【解析】
過B作DE的垂線,設(shè)垂足為G,BH⊥AE.在△ADE解直角三角形求出DE的長(zhǎng),進(jìn)而可求出EH即BG的長(zhǎng),在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長(zhǎng)然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度.
解:過B作BG⊥DE于G,BH⊥AE,
Rt△ABH中,i=tan∠BAH==,
∴∠BAH=30°,
∴BH=AB=5米;
∴AH=5米,
∴BG=HE=AH+AE=(5+21)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(5+21)米.
Rt△ADE中,∠DAE=53°,AE=21米,
∴DE=AE=28米,
∴CD=CG+GE﹣DE=26+5﹣28=(5﹣2)m.
答:宣傳牌CD高為()米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是上一動(dòng)點(diǎn),D是弦BC上一定點(diǎn),連接AB,AC,AD.設(shè)線段AB的長(zhǎng)是xcm,線段AC的長(zhǎng)是cm,線段AD的長(zhǎng)是cm.
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化的關(guān)系進(jìn)行了探究.下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)A在上的不同位置,畫圖、測(cè)量,得到了,的長(zhǎng)度與x的幾組值:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | |
x/cm | 0.00 | 0.99 | 2.01 | 3.46 | 4.98 | 5.84 | 7.07 | 8.00 |
/cm | 8.00 | 7.46 | 6.81 | 5.69 | 4.26 | 3.29 | 1.62 | 0.00 |
/cm | 2.50 | 2.08 | 1.88 | 2.15 | 2.99 | 3.61 | 4.62 | m |
請(qǐng)直接寫出上表中的m值是 ;
(2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后表中各組數(shù)據(jù)所對(duì)應(yīng)的點(diǎn)(x,),(x,),并畫出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AC=AD時(shí),AB的長(zhǎng)度約為 cm;當(dāng)AC=2AD時(shí),AB的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 其中是常數(shù),且>0.
(1)若點(diǎn)(,2)在函數(shù)的圖象上,求的值.
(2)當(dāng)=1時(shí),①當(dāng)≤≤2時(shí),求函數(shù)值的取值范圍.
②當(dāng)≤≤時(shí),函數(shù)圖象上的點(diǎn)到軸的距離恒(永遠(yuǎn))小于6,求的取值范圍.
(3)直接寫出函數(shù)圖象與有兩個(gè)交點(diǎn)時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①以B為圓心,任意長(zhǎng)為半徑作弧,交AB于D,交BC于E;②分別以D,E為圓心,以大于DE的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)M;③作射線BM交AC于N.如果BN=NC,∠A=57°,那么∠ABN的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=4,AC=3,D為AB邊上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)A、B不重合),聯(lián)結(jié)CD,過點(diǎn)D作DE⊥DC交邊BC于點(diǎn)E.
(1)如圖,當(dāng)ED=EB時(shí),求AD的長(zhǎng);
(2)設(shè)AD=x,BE=y,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;
(3)把△BCD沿直線CD翻折得△CDB',聯(lián)結(jié)AB',當(dāng)△CAB'是等腰三角形時(shí),直接寫出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn),頂點(diǎn)坐標(biāo)與y軸交在,之間(包含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于x的方程有兩個(gè)不等的實(shí)根. 其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為切實(shí)加強(qiáng)中小學(xué)生交通安全宣傳教育,讓學(xué)生真正知危險(xiǎn)、會(huì)避險(xiǎn),鄭州市某中學(xué)開展了“交通安全進(jìn)校園”系列活動(dòng).為了解七、八年級(jí)學(xué)生對(duì)交通安全知識(shí)的掌握情況,對(duì)七、八年級(jí)學(xué)生進(jìn)行了測(cè)試,現(xiàn)從兩年級(jí)中各隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)不低于90分為優(yōu)秀).
測(cè)試成績(jī)(百分制)如下:
七年級(jí):52,78,82,86,77,83,92,87,72,81,93,98,81,69,87,86,80,81,82,94
八年級(jí):87,77,90,79,93,83,88,84,82,94,86,88,57,68,89,59,81,90,88,95
分組整理,描述數(shù)據(jù)
分組 | 七年級(jí) | 八年級(jí) | ||
畫“正”計(jì)數(shù) | 頻數(shù) | 畫“正”計(jì)數(shù) | 頻數(shù) | |
一 | 1 | 2 | ||
一 | 1 | 一 | 1 | |
2 | ||||
正正 | 10 | |||
4 | 正 | 5 |
七、八年級(jí)抽取學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)表
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
七年級(jí) | 82 | 81 | 20% | |
八年級(jí) | 82.5 | 86.5 | 25% |
根據(jù)以上信息,回答下列問題:
(1)表中__________,__________,__________,
(2)若該校七年級(jí)270人和八年級(jí)280人參加了此次測(cè)試,估計(jì)參加此次測(cè)試成績(jī)優(yōu)秀的學(xué)生人數(shù);
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)哪個(gè)年級(jí)學(xué)生掌握交通安全知識(shí)較好?并說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富居民的文化生活.某社區(qū)開展跳舞、繪畫、游泳、唱歌等活動(dòng)來讓居民娛樂.為了解居民對(duì)跳舞、繪畫、游泳、唱歌這四種活動(dòng)(以下分別用,,,表示這四種不同活動(dòng))的喜愛情況,在“五一”勞動(dòng)節(jié)期間對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將不完整的條形圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛唱歌的人數(shù)?
(4)在“五—”勞動(dòng)節(jié)期間,該社區(qū)針對(duì)跳舞、繪畫、游泳、唱歌起帶頭作用的居民各選舉一名進(jìn)行獎(jiǎng)勵(lì),同時(shí)隨機(jī)抽取兩人進(jìn)行現(xiàn)場(chǎng)展示,請(qǐng)用列表或畫樹狀圖法求恰好選中跳舞和繪畫的概率.(跳舞、繪畫、游泳、唱歌分別用,,,表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com