如圖,已知OA=6,∠AOB=30°,則經(jīng)過點A的反比例函數(shù)的解析式為(   )
A.B.
C.D.
B
設(shè)A點的坐標(biāo)為(),那么=AO×cos∠AOB=,= AO×sin∠AOB=3,
反比例函數(shù)的k=×=,反比例函數(shù)的解析式為,故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點A(,2)和點B(-2, n ),一次函數(shù)圖像與y軸的交點為C.

(1)求一次函數(shù)解析式;
(2)求C點的坐標(biāo);
(3)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:直線分別與 x軸、y軸交于點A、點B,點P(,b)在直線AB 上,點P關(guān)于軸的對稱點P′ 在反比例函數(shù)圖象上.
小題1:當(dāng)a=1時,求反比例函數(shù)的解析式
小題2:設(shè)直線AB與線段P'O的交點為C.當(dāng)P'C =2CO時,求b的值;
小題3:過點A作AD//y軸交反比例函數(shù)圖象于點D,若AD=,求△P’DO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx+k(k≠0)與雙曲線y=在第一象限內(nèi)相交于點M,與x軸交于點A.

(1)求m的取值范圍和點A的坐標(biāo);
(2)若點B的坐標(biāo)為(3,0),AM=5,S△ABM=8,求雙曲線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰△OAB的頂角∠AOB=30°,點B在軸上,腰OA=4.

(1)B點的坐標(biāo)為:      ;
(2)畫出△OAB關(guān)于軸對稱的圖形△OA(不寫畫法,保留畫圖痕跡),求出A與B的坐標(biāo);
(3)求出經(jīng)過A點的反比例函數(shù)解析式.
(注:若涉及無理數(shù),請用根號表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物燃燒完后,y與x成反比(如圖所示)現(xiàn)測得藥物8分鐘燃完,此時室內(nèi)每立方米空氣中的含藥量為6毫克,請根據(jù)題中所提供的信息,解答下列問題
小題1:藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為            
自變量x的取值范圍是            。藥物燃燒完后,         
y關(guān)于x的函數(shù)關(guān)系式為              。
小題2:研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時,學(xué)生
方可進教室,那么從消毒開始,至少需要經(jīng)過       分鐘后,學(xué)生
才能進教室。
小題3:研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間
不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否
有效,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,□AOBC的對角線交于點E,反比例函數(shù)(x>0)的圖像經(jīng)過A、E兩點,若□AOBC的面積為9,則k=  ▲ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若(2,k)是雙曲線上的一點,則函數(shù)的圖象經(jīng)過
A.一、三象限B.二、四象限C.一、二象限D.三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(8),一次函數(shù)的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)的圖象于Q,△OCQ

小題1:求k的值
小題2:求一次函數(shù)圖象和反比例函數(shù)圖象在第一象限的交點M的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案