【題目】兩個小組同時從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達乙地.設第二組的步行速度為x千米/小時,根據題意可列方程是( )
A. =15
B. =
C. =15
D. =

【答案】D
【解析】設第二組的步行速度為x千米/小時,則第一組的步行速度為1.2x千米/小時,

第一組到達乙地的時間為:7.5÷1.2x;

第二組到達乙地的時間為:7.5÷x;

∵第一組比第二組早15分鐘( 小時)到達乙地,

∴列出方程為: = =

故答案為:D.

設第二組的步行速度為x千米/小時,則第一組的步行速度為1.2x千米/小時,然后依據時間等于路程÷速度可求得兩組所用的時間,最后,依據第一組比第二組早小時(15分鐘)到達乙地列出分式方程即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
①以O為位似中心在第二象限作位似比為1:2變換,得到對應的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標;
②以原點O為旋轉中心,畫出把△ABC順時針旋轉90°的圖形△A2B2C2 , 并寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE

1)如圖1,若∠COF=34°,則∠BOE=______;

2)如圖1,若∠BOE=80°,則∠COF=______

3)若∠COF=m°,則∠BOE=______度;∠BOE與∠COF的數(shù)量關系為______

4)當∠COE繞點O逆時針旋轉到如圖2的位置時,(3)中∠BOE與∠COF的數(shù)量關系是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖形中,所有四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形邊長為7cm,設正方形A、B、C、D、E、F面積分別為SA、SB、SC、SD、SE、SF,則下列各式正確有()個.

① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進30海里到達B點,此時,測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,ECD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點EMEAFBC于點M,連接AM、BD交于點N,現(xiàn)有下列結論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(x,y),若點Q的坐標為(ax+y,x+ay),其中a為常數(shù),則稱點Q是點P“a級關聯(lián)點例如,點P(1,4)“3級美聯(lián)點Q(3+4,1+3),即Q(7,13).

(1)已知點A(2,6)級關聯(lián)點是點,求點的坐標。

(2)已知點M(m1,2m)3級關聯(lián)點”M’位于y軸上.求點M’的坐標。

查看答案和解析>>

同步練習冊答案