如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為   
【答案】分析:首先利用勾股定理計算出BD的長,再根據(jù)折疊可得AD=A′D=5,進而得到A′B的長,再設AE=x,則A′E=x,BE=12-x,再在Rt△A′EB中利用勾股定理可得方程:(12-x)2=x2+82,解出x的值,可得答案.
解答:解:∵AB=12,BC=5,
∴AD=5,
∴BD==13,
根據(jù)折疊可得:AD=A′D=5,
∴A′B=13-5=8,
設AE=x,則A′E=x,BE=12-x,
在Rt△A′EB中:(12-x)2=x2+82
解得:x=,
故答案為:
點評:此題主要考查了圖形的翻折變換,關鍵是掌握折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=8,BC=6,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖,在矩形紙片ABCD中,AB=3,BC=4,把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合,則EF=
25
12
25
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對角線BD折疊,使點C落在E處,BE交AD于點F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點G,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=8,BC=10.E、F為AB、BC邊上兩個動點,以EF為折痕折疊紙片,使點B恰好落在AD邊上的點P處.當E、F運動時,點P也在一定范圍內移動,則這個移動范圍的最大距離為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

動手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點A落在BC邊上的A′處,折痕為PQ,當點A′在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動.
求:(1)當點Q與點D重合時,A′C的長是多少?
(2)點A′在BC邊上可移動的最大距離是多少?

查看答案和解析>>

同步練習冊答案