如圖,在坐標(biāo)平面內(nèi),過點(diǎn)(0,0),(0,3),(3,3),(3,1),(5,1)和(5,0)的水平、豎直連線圍成“L”形區(qū)域,則過原點(diǎn)且將該圖形面積平分的直線與點(diǎn)A、B所在直線的交點(diǎn)的坐標(biāo)是________.

(3,
分析:設(shè)與AB的交點(diǎn)為M(3,y),延長AB交x軸于點(diǎn)F,則可得矩形BCDF,△OMF及梯形AMOE,根據(jù)OM平分該圖形面積,可得出S梯形AEOM=S矩形BCDF+S△OMF,得出方程后解出y的值即可得出答案.
解答:
解:設(shè)與AB的交點(diǎn)M,坐標(biāo)為(3,y),
則AM=3-y,MF=y,
故可得S矩形BCDF=FD×BF=2,S△OMF=OF×MF=y,S梯形AEOM=(AM+OE)×AE=(3-y+3)×3=9-y,
∵OM平分該圖形面積,
∴S梯形AEOM=S矩形BCDF+S△OMF,即9-y=2+y,
解得:y=,
故可得點(diǎn)M的坐標(biāo)為(3,).
故答案為:(3,).
點(diǎn)評(píng):此題考查了一次函數(shù)綜合題,涉及了矩形的性質(zhì)、梯形的面積,解答本題的關(guān)鍵是設(shè)出交點(diǎn)的坐標(biāo),然后利用面積相等建立方程,難度較大,注意所學(xué)知識(shí)的融會(huì)貫通.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在坐標(biāo)平面內(nèi),A(0,0),B(12,0),C(12,6),D(0,6),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1單位/秒的速度移動(dòng).點(diǎn)P沿AB邊從點(diǎn)A開始向B以2單位/秒的速度移動(dòng),假設(shè)P、Q同時(shí)出發(fā),t表示移動(dòng)的時(shí)間(0≤t≤6).
(1)寫出△PQA的面積S與t的函數(shù)關(guān)系式;
(2)四邊形APCQ的面積與t有關(guān)嗎?請(qǐng)說明理由;(3)當(dāng)t為何值時(shí),△PQC面積最小,并求此時(shí)△PQC的面積;
(4)△APQ能否成軸對(duì)稱圖形?若能,請(qǐng)求出相應(yīng)的t值,并寫出其對(duì)稱軸的函數(shù)關(guān)系式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在坐標(biāo)平面內(nèi),O點(diǎn)為原點(diǎn),點(diǎn)P、Q關(guān)于y軸對(duì)稱,且P點(diǎn)坐標(biāo)為(
2
,2),則△OPQ的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(45):2.7 最大面積是多少(解析版) 題型:解答題

已知:如圖,在坐標(biāo)平面內(nèi),A(0,0),B(12,0),C(12,6),D(0,6),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1單位/秒的速度移動(dòng).點(diǎn)P沿AB邊從點(diǎn)A開始向B以2單位/秒的速度移動(dòng),假設(shè)P、Q同時(shí)出發(fā),t表示移動(dòng)的時(shí)間(0≤t≤6).
(1)寫出△PQA的面積S與t的函數(shù)關(guān)系式;
(2)四邊形APCQ的面積與t有關(guān)嗎?請(qǐng)說明理由;(3)當(dāng)t為何值時(shí),△PQC面積最小,并求此時(shí)△PQC的面積;
(4)△APQ能否成軸對(duì)稱圖形?若能,請(qǐng)求出相應(yīng)的t值,并寫出其對(duì)稱軸的函數(shù)關(guān)系式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知:如圖,在坐標(biāo)平面內(nèi),A(0,0),B(12,0),C(12,6),D(0,6),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1單位/秒的速度移動(dòng).點(diǎn)P沿AB邊從點(diǎn)A開始向B以2單位/秒的速度移動(dòng),假設(shè)P、Q同時(shí)出發(fā),t表示移動(dòng)的時(shí)間(0≤t≤6).
(1)寫出△PQA的面積S與t的函數(shù)關(guān)系式;
(2)四邊形APCQ的面積與t有關(guān)嗎?請(qǐng)說明理由;(3)當(dāng)t為何值時(shí),△PQC面積最小,并求此時(shí)△PQC的面積;
(4)△APQ能否成軸對(duì)稱圖形?若能,請(qǐng)求出相應(yīng)的t值,并寫出其對(duì)稱軸的函數(shù)關(guān)系式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(45):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:如圖,在坐標(biāo)平面內(nèi),A(0,0),B(12,0),C(12,6),D(0,6),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1單位/秒的速度移動(dòng).點(diǎn)P沿AB邊從點(diǎn)A開始向B以2單位/秒的速度移動(dòng),假設(shè)P、Q同時(shí)出發(fā),t表示移動(dòng)的時(shí)間(0≤t≤6).
(1)寫出△PQA的面積S與t的函數(shù)關(guān)系式;
(2)四邊形APCQ的面積與t有關(guān)嗎?請(qǐng)說明理由;(3)當(dāng)t為何值時(shí),△PQC面積最小,并求此時(shí)△PQC的面積;
(4)△APQ能否成軸對(duì)稱圖形?若能,請(qǐng)求出相應(yīng)的t值,并寫出其對(duì)稱軸的函數(shù)關(guān)系式;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案