【題目】如圖,在平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,3),B(-4,0),C(0,0)

(1)①畫出將△ABC向上平移1個(gè)單位長度,再向右平移5個(gè)單位長度后得到的△A1B1C1;②畫出將△ABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2O;
(2)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到點(diǎn)A1與點(diǎn)A2的距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

【答案】
(1)解:如圖,△A1B1C1、△A2B2O為所求作的三角形.

(2)解:如圖,作點(diǎn)A1關(guān)于x軸的對(duì)稱點(diǎn)A3 , 連接A2A3 , 交x軸于點(diǎn)P,即P為所求作的點(diǎn)。

∵A1地坐標(biāo)為(3,1),A3(4,4)
∴A3的坐標(biāo)為(3,-1)
設(shè)直線A2A3的解析式為y=kx+b

解之:
∴直線A2A3的解析式為y=5x-16.
當(dāng)y=0時(shí),5x-16=0
解之:x=
故P點(diǎn)的坐標(biāo)為 .
【解析】(1)分別將點(diǎn)A、B、C向上平移1個(gè)單位,再向右平移5個(gè)單位,然后順次連接即可;根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C以點(diǎn)O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn),然后順次連接即可。
(2)利用最短路徑問題解決,首先作A1點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A3 , 再連接A2A3與x軸的交點(diǎn)就是點(diǎn)P,再求出直線A2A3的解析式,然后求出直線A2A3與x軸的交點(diǎn)坐標(biāo)即為所求的點(diǎn)P的坐標(biāo)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李婷是一位運(yùn)動(dòng)鞋經(jīng)銷商,為了解鞋子的銷售情況,隨機(jī)調(diào)查了9位學(xué)生的鞋子的尺碼,由小到大是:20,21,21,22,22,22,22,23,23.對(duì)這組數(shù)據(jù)的分析中,李婷最感興趣的數(shù)據(jù)代表是( )

A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.

(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)SAMC=SBOC時(shí),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

C. 明天降雨的概率為,表示明天有半天都在降雨

D. 了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A'B',那么點(diǎn)A(-2,5)的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式3x+120的非正整數(shù)解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD與⊙O相切,AD∥BC,連結(jié)OD,AC.

(1)求證:∠B=∠DCA;
(2)若 ,OD= , 求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給人們的生活帶來方便,2017年興化市準(zhǔn)備在部分城區(qū)實(shí)施公共自行車免費(fèi)服務(wù).圖1是公共自行車的實(shí)物圖,圖2是公共自行車的車架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點(diǎn)E到AB的距離(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.5a2+3a2=8a4
B.a3a4=a12
C.(a+2b)2=a2+4b2
D.(a﹣b)(﹣a﹣b)=b2﹣a2

查看答案和解析>>

同步練習(xí)冊(cè)答案