【題目】如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、點C分別在y軸、x軸的正半軸上,OA,OC的長分別是方程x2-7x+12=0的兩根(OA<OC).P為直線AB上一動點,直線PQ⊥OP交直線BC于點Q.
(1)求點B的坐標;
(2)當點P在線段AB上運動(不與A,B重合)時,設點P的橫坐標為m,線段CQ的長度為l.求出l關于m的函數(shù)解析式;
(3)在坐標平面內(nèi)是否存在點D,使以O、P、Q、D為頂點的四邊形為正方形?若存在,請直接寫出D點的坐標;若不存在,請說明理由.
【答案】(1)B(4,3);(2) ;(3)存在,D(3,-1)或(-3,7).
【解析】
(1)通過解方程求出線段的長度,利用矩形的性質(zhì)得到AB=4,BC=3,求得B(4,3);
(2)因為點P在線段AB上,點P的橫坐標為m,用m表示出AP的長度,利用相似三角形的性質(zhì)列出比例式求出l關于m的函數(shù)解析式;
(3)如圖,過點D作DE⊥OC于E,由以O、P、Q、D為頂點的四邊形為正方形,得到OP=PQ=OD,通過三角形全等,對應邊相等求得AP=m=1,再根據(jù)另一對三角形全等得到點D的坐標.
(1)解方程x2-7x+12=0得:x1=3,x2=4,
∴OA=3,OC=4,
∴A(0,3),C(4,0),
∵四邊形OABC為矩形,
∴AB=4,BC=3,
∴B(4,3);
(2)點P在線段AB上,點P的橫坐標為m,
∴AP=m,
∵CQ=l,
∴BQ=3-l,
∵∠OAP=∠B=∠OPQ=90°,
∴∠APO+∠BPQ=∠APO+∠AOP=90°,
∴∠APO=∠BPQ,
∴△APO∽△BPQ,
∴,
即,
∴;
(3)存在,
如圖,過點D作DE⊥OC于E,
∵四邊形ODQP是正方形,
∴OP=PQ=OD,
在△AOP與△BPQ中,
,
∴△AOP≌△BPQ(AAS),
∴PB=OA=3,
∴AP=BP=1,
在△AOP與△OED中,
,
∴△AOP≌△OEP(AAS),
∴OE=AO=3,DE=AP=1,
∴D(3,-1).
若點P在點B的右邊,同理可得D(-3,7)
綜上所述D(3,-1)或(-3,7)
科目:初中數(shù)學 來源: 題型:
【題目】在“母親節(jié)”前夕,我市某校學生積極參與“關愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗發(fā)現(xiàn),若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因為2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥BC交AC于點E,已知AD=AB,連接BE交AD于點F,下列結論:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正確的有( 。
A. 1個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推動陽光體育活動的廣泛開展,引導學生積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用.現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 人,圖①中的m的值為 ,圖①中“38號”所在的扇形的圓心角度數(shù)為 ;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買200雙運動鞋,建議購買36號運動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達到節(jié)水的目的,該市自來水收費的價目表如下(注:水費按月份結算,表示立方米)
請根據(jù)上表的內(nèi)容解答下列問題:
(1)填空:若該戶居民2月份用水5m3,則應交水費 元;3月份用水8m3,則應收水費 元;
(2)若該戶居民4月份用水am3(其中a>10m3),則應交水費多少元(用含a的代數(shù)式表示,并化簡)?
(3)若該戶居民5、6兩個月共用水14m3(6月份用水量超過了5月份),設5月份用水xm3,直接寫出該戶居民5、6兩個月共交水費多少元(用含x的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天,明明和強強相約到距他們村莊560米的博物館游玩,他們同時從村莊出發(fā)去博物館,明明到博物館后因家中有事立即返回.如圖是他們離村莊的距離y(米)與步行時間x(分鐘)之間的函數(shù)圖象,若他們出發(fā)后6分鐘相遇,則相遇時強強的速度是_____米/分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)第五次、第六次全國人口普查結果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學歷狀況統(tǒng)計圖如圖所示(部分信息未給出):
解答下列問題:
(1)求第六次人口普查小學學歷的人數(shù),并把條形統(tǒng)計圖補充完整;
(2)求第五次人口普查中該市常住人口每萬人中具有初中學歷的人數(shù);
(3)第六次人口普查結果與第五次相比,每萬人中初中學歷的人數(shù)增加了多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,BC=10cm,點D為AB的中點,如果點P在線段BC上以2cm/s的速度由點B向點C運動,同時,點Q在線段AC上由點A向點C 以4cm/s的速度運動.若點P、Q兩點分別從點B、A同時出發(fā).
(1)經(jīng)過2秒后,求證:∠DPQ=∠C.
(2)若△CPQ的周長為18cm,問經(jīng)過幾秒鐘后,△CPQ是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com