【題目】如圖,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,點(diǎn)P沿線段AB從點(diǎn)A向點(diǎn)B運(yùn)動,設(shè)AP=x,
(1)求AD的長;
(2)點(diǎn)P在運(yùn)動過程中,是否存在以A、P、D為頂點(diǎn)的三角形與以P、C、B為頂點(diǎn)的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)直接寫出:當(dāng)△CDP為等腰三角形時x的值.

【答案】
(1)解:過點(diǎn)D作DE//BC交AB于點(diǎn)E,
∵BE//CD,DE//BC,
∴四邊形BCDE是平行四邊形,
又∵BC=4,
∴DE=BC=4,
∵DE//BC,∠B=60°,
∴∠DEA=∠B=60°,
∵AD⊥AB,
∴∠A=90°,
∴∠ADE= 90°-∠DEA=30°,
∴AE=DE=2,
∴AD==2.


(2)解:∵△ADP中,∠A=90°,
∴△PBC是直角三角形,
∵∠B=60°,
∴∠BPC=90°或∠BCP=90°,
①當(dāng)∠BPC=90°時,△BCP≌△EDA,
∴AE=BP=2,CP=AD=2
∴AP=x=AB-BP=10-2=8,
,
又∵∠A=∠BPC=90°,
∴△ADP與△CPB不相似;
②當(dāng)∠BCP=90°時,∠BPC=90°-∠B=30°,
∵BC=4,AB=10,
∴BP=2BC=8,AP=x=AB-BP=10-8=2,
==2,
又∵∠A=∠BCP=90°,
∴△ADP∽△CPB,
綜上可知,x=2時,結(jié)論成立.
(3)解:①當(dāng)PD=PC時,x=4;
②DP=DC時, x= 2 ;
③PC=CD時,x=8-2.
【解析】解:(3)作CF⊥AB交AB于F,

∵BC=4,∠B=60°,
∴BF=BC=2,
∵AB=10,
∴AF=CD=10-2=8,
∵AP=x,AD=2
∴PF=8-x,CF=2,
①當(dāng)PD=PC時,
∴AD2+AP2=PF2+CF2,
即x2=(8-x)2
∴x=4;
②DP=DC=8時,
∴AD2+AP2=DP2,
即12+x2=64,
∴x= 2 ;
③PC=CD=8時,
∴PF2+CF2=PC2,
即12+(8-x)2=64,
∴x=8-2.


【考點(diǎn)精析】本題主要考查了勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用代數(shù)式表示:

1a,b兩數(shù)的平方和減去它們乘積的2倍;

2a,b兩數(shù)的和的平方減去它們的差的平方;

3)一個兩位數(shù),個位上的數(shù)字為a,十位上的數(shù)字為b,請表示這個兩位數(shù);

4)若a表示三位數(shù),現(xiàn)把2放在它的右邊,得到一個四位數(shù),請表示這個四位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,.說明的理由.

解:∵(已知),

________//_______________________

_______________

________),

_______________

(己證),

_______________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式.例如構(gòu)造圖1可以得到.請解答下列問題:

1)仿照圖1,構(gòu)造適當(dāng)?shù)膱D形得到的值;

2)寫出圖2中所表示的數(shù)學(xué)等式;

3)利用(2)中所得到的結(jié)論,解決下面的問題:己知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是AE=1,CF=2,則EF長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D是△ABC中的邊BC上的一點(diǎn),∠BAD=∠C,∠ABC的平分線交邊AC于E,交AD于F,那么下列結(jié)論中錯誤的是( )

A.△BDF∽△BEC
B.△BFA∽△BEC
C.△BAC∽△BDA
D.△BDF∽△BAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①計算:(-1)2+ -︱-5︱
②用適當(dāng)?shù)姆椒ń夥匠蹋簒2=2x+35.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點(diǎn)A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點(diǎn)HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

同步練習(xí)冊答案