【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?

【答案】(1)平方米;(2)米;

【解析】

試題(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長(zhǎng),最后根據(jù)扇形的面積公式即可求得結(jié)果;

2)設(shè)圓錐底面圓的半徑為r,而弧BC的長(zhǎng)即為圓錐底面的周長(zhǎng),根據(jù)弧長(zhǎng)公式及圓的周長(zhǎng)公式即可求得結(jié)果.

1∵∠BAC=90°

BC為直徑

∴AB=AC

∴AB=AC=BC·sin45°=

∴S陰影=SO-S扇形ABC=()2-;

2)設(shè)圓錐底面圓的半徑為r,而弧BC的長(zhǎng)即為圓錐底面的周長(zhǎng),由題意得

2r=,解得r=

答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前夕,某超市用元購(gòu)進(jìn)了一批箱裝飲料,上市后很快售完,接著又用元購(gòu)進(jìn)第二批這種箱裝飲料.已知第二批所購(gòu)箱裝飲料的進(jìn)價(jià)比第一批每箱多元,且數(shù)量是第一批箱數(shù)的.

1)求第一批箱裝飲料每箱的進(jìn)價(jià)是多少元;

2)若兩批箱裝飲料按相同的標(biāo)價(jià)出售,為加快銷售,商家決定最后的箱飲料按八折出售,如果兩批箱裝飲料全部售完利潤(rùn)率不低于(不考慮其他因素),那么每箱飲料的標(biāo)價(jià)至少多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以的邊、為邊的等邊三角和等邊三角形,四邊形是平行四邊形.

當(dāng)滿足什么條件時(shí),四邊形是矩形;

當(dāng)滿足什么條件時(shí),平行四邊形不存在;

當(dāng)分別滿足什么條件時(shí),平行四邊形是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB、DE為⊙O的直徑,C是⊙O上一點(diǎn),且=

(1)BECE有什么數(shù)量關(guān)系?為什么?

(2)若∠BOE=60°,則四邊形OACE是什么特殊的四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE

1)若∠BAE=40°,求∠C的度數(shù);

2)若ABC周長(zhǎng)為15cm,AC=6cm,求DC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,其中一個(gè)銳角為,,點(diǎn)在直線上(不與,兩點(diǎn)重合),當(dāng)時(shí),的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O的弦。過點(diǎn)BBC//AD,交圓O于點(diǎn)C,連接AC,過點(diǎn)CCD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且BCP=ACD。

1判斷直線PC與圓O的位置關(guān)系,并說明理由:

2 AB=9,BC=6,求PC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,D中點(diǎn),若∠BAC=70°,求∠C.

下面是小雯的解法,請(qǐng)幫他補(bǔ)充完整.

解:在⊙O中,

D的中點(diǎn)

=,

∴∠l=2(   )(填推理的依據(jù))

∵∠BAC=70°

∴∠2=35°

AB是⊙O的直徑,

∴∠ADB=90°(   )(填推理的依據(jù))

∴∠B=90°﹣2=55°

A、B、C、D四個(gè)點(diǎn)都在⊙O上,

∴∠C+B=180°(   )(填推理的依據(jù))

∴∠C=l80°﹣B=   (填計(jì)算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,過點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)FCD上,CF=AE,連接BF,AF.

(1)求證:四邊形BFDE是矩形;

(2)AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值

查看答案和解析>>

同步練習(xí)冊(cè)答案