【題目】已知拋物線y=b<0)的圖像的頂點為 M,與 y 軸交于點 A,過點 A的直線 y=x+c x 軸交于點 N,與拋物線另交于點B6,8.

1)求線段 AN 的長;

3)平移該拋物線得到一條新拋物線.設(shè)新拋物線的頂點為 M’.若新拋物線經(jīng)過點 N, 且新拋物線的頂點和原拋物線的頂點的連線 MM’平行于直線 AB,求新拋物線對應(yīng)的函數(shù)表達式.

【答案】1.2)答案見解析.

【解析】

1)根據(jù)點的坐標(biāo)先求出函數(shù)解析式,再求出A點和N點(2)根據(jù)拋物線的平移先設(shè)解析式,求出點的坐標(biāo),再求拋物線的解析式.

解:(1)直線與拋物線y=相交與A點和B

已知點B6,8),將點B帶入直線解析式中得:

直線解析式為

點坐標(biāo)(-2,0),點坐標(biāo)(0,2

2)由(1)知,點坐標(biāo)(0,2),點B6,8

帶入拋物線解析式中得:

拋物線解析式為y=

當(dāng)y等于0時得:

頂點M的坐標(biāo)為(2,0

設(shè)新拋物線的頂點為 M’.若新拋物線經(jīng)過點 N,, 且新拋物線的頂點和原拋物線的頂點的連線 MM’平行于直線 AB

經(jīng)過MM’的直線解析式為

設(shè)新拋物線函數(shù)解析式為

經(jīng)過MM’的直線解析式為

新拋物線的函數(shù)表達式為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙上一點,,垂足為、、分別是、上一點(不與端點重合),如果,下面結(jié)論:①;②;③;④;⑤.其中正確的是(

A. ①②③B. ①③⑤C. ④⑤D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分別靜止在AB處(BA的正北方)是我國兩艘軍艦相距10km,為在D處的一艘我國貨輪執(zhí)行護航任務(wù),A處軍艦測得D點在南偏東63.4°,B處軍艦測得D點在南偏東36.8°.貨輪沿著北偏東16.4°方向航行了12km到達C點,此時在B處的軍艦測得C點在南偏東73.6°方向上.

1)求∠BCD的度數(shù);

2)求AD的長.(參考數(shù)據(jù):sin36.8°≈0.60,cos36.8°≈0.80tan26.6°≈0.50,2.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點的坐標(biāo)分別為A (0,2),B(﹣1,0),點C為線段AB的中點,現(xiàn)將線段BA繞點B按逆時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過點D.

(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣1.

求點D的坐標(biāo)及該拋物線的解析式;

連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由.

(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(﹣1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點的個數(shù)是4個,請直接寫出a的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全受到全社會的廣泛關(guān)注,濟南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為_____.

2)請補全條形統(tǒng)計圖.

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對食品安全知識達到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達到了解程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

【答案】160;90°;(2)補圖見解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(160;90°.

2)補全的條形統(tǒng)計圖如圖所示.

3)對食品安全知識達到了解基本了解的學(xué)生所占比例為,由樣本估計總體,該中學(xué)學(xué)生中對食品安全知識達到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.

點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應(yīng)國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預(yù)計2018年達到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設(shè)2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點 A ( 3 , 3) ,把直線 OA 向下平移后,與反比例函數(shù)的圖象交于點B(6,m),與x軸、y軸分別交于C、D兩點.

(1)求 m的值;

( 2 )求過 A、B、D 三點的拋物線的解析式;

( 3 )若點E是拋物線上的一個動點,是否存在點 E,使四邊形 OECD 的面積S1,是四邊形OACD 面積S?若存在,求點 E 的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AC為直徑作⊙OBC于點D,交AB于點G,且DBC中點,DEAB,垂足為E,交AC的延長線于點F.

(1)求證:直線EF是⊙O的切線;

(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長;

(3)連接CG,在(2)的條件下,求CG:EF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AB=4.若動點D在線段AC上(不與點A、C重合),過點DDEACAB邊于點E.點A關(guān)于點D的對稱點為點F,以FC為半徑作⊙C,當(dāng)DE=_______時,⊙C與直線AB相切.

查看答案和解析>>

同步練習(xí)冊答案