如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)在第一象限內(nèi)的圖象交于點A,與x軸交于點B,線段OA=5,C為x軸正半軸上一點,且

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△AOB的面積.

(1)y=-x(2)①(3)y=5x

【解析】解:(1)根據(jù)題意得:y=-x。

(2)①設(shè)直線l3的函數(shù)表達(dá)式為y=k1x(k1≠0),

∵過原點的直線l3向上的方向與x軸的正方向所成的角為300,直線過一、三象限,

∴k1=tan300=,∴直線l3的函數(shù)表達(dá)式為。;

②∵l3與l4的夾角是為900,∴l(xiāng)4與x軸的夾角是為600。

設(shè)l4的解析式為y=k2x(k2≠0),

∵直線l4過二、四象限,∴k2=-tan600=。

∴直線l4的函數(shù)表達(dá)式為。

(3)通過觀察(1)(2)中的兩個函數(shù)表達(dá)式可知,當(dāng)兩直線互相垂直時,它們的函數(shù)表達(dá)式中自變量的系數(shù)互為負(fù)倒數(shù)關(guān)系,

∴過原點且與直線垂直的直線l5的函數(shù)表達(dá)式為y=5x。

(1)根據(jù)題意可直接得出l2的函數(shù)表達(dá)式。

(2)①先設(shè)直線l3的函數(shù)表達(dá)式為y=k1x(k1≠0),根據(jù)過原點的直線l3向上的方向與x軸的正方向所成的角為300,直線過一、三象限,求出k1=tan30°,從而求出直線l3的函數(shù)表達(dá)式。

②根據(jù)l3與l4的夾角是為900,求出l4與x軸的夾角是為600,再設(shè)l4的解析式為y=k2x(k2≠0),根據(jù)直線l4過二、四象限,求出k2=-tan600,從而求出直線l4的函數(shù)表達(dá)式。

(3)通過觀察(1)(2)中的兩個函數(shù)表達(dá)式可得出它們的函數(shù)表達(dá)式中自變量的系數(shù)互為負(fù)倒數(shù)關(guān)系,再根據(jù)這一關(guān)系即可求出與直線垂直的直線l5的函數(shù)表達(dá)式。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案