【題目】已知:如圖,在△ABC中,∠ABC的平分線BPAC邊的垂直平分線PQ交于點P,過點P分別作PDAB于點D,PEBC于點E,若BE10cm,AB6cm,求CE的長.

【答案】4cm

【解析】

連接APCP,根據(jù)角平分線性質(zhì)求出PD=PE,根據(jù)線段垂直平分線求出PA=PC,根據(jù)HLRTPADRTPCE,即可得出答案.

解:如圖,連接AP、CP,

BP平分∠ABC,PDAB,PEBC,

∴∠PBD=∠PBE,∠PDB=∠PEC90°,PDPE,

在△BPD和△BPE中,

,

∴△BPD≌△BPEAAS),

BDBE

又∵BE10cm,AB6cm,

ADBDABBEAB4cm,

PQ垂直平分AC,

PAPC,

RTPADRTPCE中,

,

RTPADRTPCEHL),

CEAD4cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C,D為線段AB上的兩點,M,N分別是線段AC,BD的中點.

(1)如果CD=5cm,MN=8cm,求AB的長;

(2)如果AB=a,MN=b,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,∠BAC120°,ADBC于點D,點PBA延長線上一點,點O是線段AD上一點,OPOC,

(1)求∠APO+DCO的度數(shù);

(2)求證:POC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A、B在坐標軸上,其中A(0)、B(0)滿足:

1)求A、B兩點的坐標;

2)將線段AB平移到CD,點A的對應點為C(-2,t),如圖(1)所示.若三角形ABC的面積為9,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用相同的小正方形按照某種規(guī)律進行擺放.根據(jù)圖中小正方形的排列規(guī)律,猜想第個圖中小正方形的個數(shù)為___________(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點A表示數(shù)a,B表示數(shù)b,C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.

(1)a=___,b=___c=___;

(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”)

(3)A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,B與點C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示);

(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長都為 1,△ABC 的頂點都在格點上.

(1)判斷ABC 是什么形狀,并說明理由.

(2)ABC 的面積.

查看答案和解析>>

同步練習冊答案