如圖,已知△ABC是等邊三角形,AB=5cm,AD⊥BC,DE⊥AB,DF⊥AC,則∠BAD=
30°
30°
,∠ADF=
60°
60°
,BD=
2.5cm
2.5cm
,∠EDF=
120°
120°
分析:根據(jù)等邊三角形的性質以及垂線的性質進行解答.
解答:解:∵△ABC是等邊三角形,AD⊥BC,AB=5cm,
∴BD=CD=
1
2
BC=2.5cm,∠BAD=∠CAD=30°,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
∵∠BAD=∠CAD=30°,
∴∠ADE=∠ADF=60°,
∴∠EDF=120°,
故答案為30°,60°,2.5cm,120°.
點評:本題主要考查等邊三角形的性質的知識點,解答本題的關鍵是等邊三角形的邊和角等特征,此題難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案