精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.
分析:根據(jù)△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,證明∠NCM=∠ACB=60°即可證明△CMN是等邊三角形;
解答:證明:∵△ABC是等邊三角形,△CDE是等邊三角形,精英家教網(wǎng)M是線段AD的中點,N是線段BE的中點,
∴∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE,
∴AD=BE,AM=BN;
∴AC=BC,∠CAD=∠CBE,AM=BN,
∴△AMC≌△BNC(SAS),
∴CM=CN,∠ACM=∠BCN;
又∵∠NCM=∠BCN-∠BCM,
∠ACB=∠ACM-∠BCM,
∴∠NCM=∠ACB=60°,
∴△CMN是等邊三角形.
點評:本題考查了等邊三角形的判定與性質及全等三角形的判定與性質,難度一般,熟練掌握等邊三角形的性質是解答的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案