【題目】2019年“十·一”黃金周期間,安仁古鎮(zhèn)共接待游客約225000人,其中數(shù)“225000”用科學(xué)記數(shù)法表示為( 。
A.225×103B.22.5×104C.2.25×105D.0.225×106
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能判定四邊形ABCD是平行四邊形的條件是:∠A:∠B:∠C:∠D的值為( )
A. 1:2:3:4 B. 1:4:2:3 C. 1:2:2:1 D. 1:2:1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn)A(0,4)和C(8,0),P(t,0)是x軸正半軸上的一個(gè)動點(diǎn),M是線段AP的中點(diǎn),將線段MP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PB,過點(diǎn)B作x軸的垂線,過點(diǎn)A作y軸的垂線,兩直線交于點(diǎn)D.
(1)求b、c的值;
(2)當(dāng)t為何值時(shí),點(diǎn)D落在拋物線上;
(3)是否存在t,使得以A,B,D為頂點(diǎn)的三角形與△AOP相似?若存在,求此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長度相同,且斜邊BC與BE在同一直線上,AC與BD交于點(diǎn)O,連接CD.
求證:△CDO是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H).
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你利用圖③,在圖③中用尺規(guī)作出△DEF,使△DEF和△ABC不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2-4x-3)(x2-4x+1)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y-3)(y+1)+4 (第一步)
= y2-2y+1 (第二步)
=(y-1)2 (第三步)
=(x2-4x-1)2 (第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)請你模仿以上方法嘗試對多項(xiàng)式(x2+2x)(x2+2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( 。
A. 3a+2a=6a B. a3a4=a12
C. a10÷a2=a5 D. (﹣4a4b)2=16a8b2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com