【題目】在一次越野賽跑中,當(dāng)小明跑了1600m時,小剛跑了1450m,此后兩人分別調(diào)整速度,并以各自新的速度勻速跑,又過100s時小剛追上小明,200s時小剛到達(dá)終點,300s時小明到達(dá)終點.他們賽跑使用時間t(s)及所跑距離如圖s(m),這次越野賽的賽跑全程為 m?

【答案】2050.

【解析

試題設(shè)小明、小剛新的速度分別是xm/s、ym/s,然后根據(jù)100s后兩人相遇和兩人到達(dá)終點的路程列出關(guān)于x、y的二元一次方程組,求解后再根據(jù)小明所跑的路程等于越野賽的全程列式計算即可得解.

試題解析:設(shè)小明、小剛新的速度分別是xm/s、ym/s,

由題意得

,

得,y=x+1.5,

得,4y-3=6x,

代入得,4x+6-3=6x,

解得x=1.5,

故這次越野賽的賽跑全程=1600+300×1.5=1600+450=2050m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°O是斜邊AB的中點,點D,E分別在直角邊ACBC上,且∠DOE=90°,DEOC于點P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P(-2,3)關(guān)于直線y=x-1對稱的點的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年3月,某市教育主管部門在初中生中開展了“文明禮儀知識競賽”活動,活動結(jié)束后,隨機抽取了部分同學(xué)的成績(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計圖表。

根據(jù)以上信息解答下列問題

(1)統(tǒng)計表中,a= ,b= ,c=

(2)扇形統(tǒng)計圖中,m的值為 !癈”所對應(yīng)的圓心角的度數(shù)是

(3)若參加本次競賽的同學(xué)共有5000人,請你估計成績在95分及以上的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D是等腰直角三角形ABC斜邊BC所在直線上一點(不與點B重合).

(1)如圖1,當(dāng)點D在線段BC上時,線段CE、BD之間的位置關(guān)系是__________,數(shù)量關(guān)系是___________;

(2)如圖2,當(dāng)點D在線段BC的延長線上時,探索AD、BD、CD三條線段之間的數(shù)量關(guān)系,寫出結(jié)論并證明;

(3)若BD=CD,直接寫出∠BAD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正六邊形ABCDEF內(nèi)放入2008個點,若這2008個點連同正六邊形的六個頂點無三點共線,則該正六邊形被這些點分成互不重合的三角形共_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC與△ADE中,AB=AC,AD=AE,∠A是公共角。

(1)BD與CE的數(shù)量關(guān)系是:BD______CE;

(2)把圖①△ABC繞點A旋轉(zhuǎn)一定的角度,得到如圖②所示的圖形。

①求證:BD=CE;

②BD與CE所在直線的夾角與∠DAE的數(shù)量關(guān)系是什么?說明理由。

(3)若AD=10,AB=6,把圖①中的△ABC繞點A順時針旋轉(zhuǎn)α度(0°<α≤360)直接寫出BD長度的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點EEGCDAF于點G,連接DG

1)求證:四邊形EFDG是菱形;

2)若AG=7、GF=3,求DF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平面直角坐標(biāo)系中,矩形OABC的頂點A6,0、B6,4,D是BC的中點動點P從O點出發(fā),以每秒1個單位的速度,沿著OA、AB、BD運動設(shè)P點運動的時間為t秒0<t<13

1寫出POD的面積S與t之間的函數(shù)關(guān)系式,并求出POD的面積等于9時點P的坐標(biāo);

2當(dāng)點P在OA上運動時,連結(jié)CP問:是否存在某一時刻t,當(dāng)CP繞點P旋轉(zhuǎn)時,點C能恰好落到AB的中點M處?若存在,請求出t的值并判斷此時CPM的形狀;若不存在,請說明理由;

3當(dāng)點P在AB上運動時,試探索當(dāng)PO+PD的長最短時的直線PD的表達(dá)式。

查看答案和解析>>

同步練習(xí)冊答案