如圖,在?ABCD中,點(diǎn)M為CD的中點(diǎn),AM與BD相交于點(diǎn)N,那么△DMN與四邊形BCMN的面積的比為:
1
5
1
5
分析:過N作EF⊥AB于E,交DC于F,求出EF是平行四邊形的高,根據(jù)平行四邊形性質(zhì)求出△ANB∽△MND,得出
AB
DM
=
EN
FN
=
2
1
,求出FN=
1
3
EF,分別求出△DMN與四邊形BCMN的面積,代入求出即可.
解答:解:過N作EF⊥AB于E,交DC于F,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵M(jìn)為CD的中點(diǎn),
∴CD=AB=2DM,
∵EF⊥AB,
∴EF⊥CD,
即EF是平行四邊形的高,
∵AB∥CD,
∴△ANB∽△MND,
AB
DM
=
EN
FN
=
2
1
,
∴FN=
1
3
EF,
∴△DNM的面積是
1
2
DM×FN=
1
2
×
1
2
DC×
1
3
EF=
1
12
DC×EF,
四邊形BCMN的面積是S△BDC-S△DMN=
1
2
×
DC×EF-
1
12
DC×EF=
5
12
DC×EF,
∴△DMN與四邊形BCMN的面積的比為
1
12
5
12
=
1
5

故答案為:
1
5
點(diǎn)評(píng):本題考查了平行四邊形性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是能分別求出△DMN與四邊形BCMN的面積,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案