【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結論有( )

A.2個
B.3個
C.4個
D.5個

【答案】D
【解析】解:如圖,

∵動點F,E的速度相同,

∴DF=CE,

又∵CD=BC,

∴CF=BE,

在△ABE和△BCF中,

∴△ABE≌△BCF(SAS),故①正確;

∴∠BAE=∠CBF,AE=BF,故②正確;

∵∠BAE+∠BEA=90°,

∴∠CBF+∠BEA=90°,

∴∠APB=90°,故③正確;

在△BPE和△BCF中,

∵∠BPE=∠BCF,∠PBE=∠CBF,

∴△BPE∽△BCF,

= ,

∴CFBE=PEBF,

∵CF=BE,

∴CF2=PEBF,故④正確;

∵點P在運動中保持∠APB=90°,

∴點P的路徑是一段以AB為直徑的弧,

設AB的中點為G,連接CG交弧于點P,此時CP的長度最小,

在Rt△BCG中,CG= = =

∵PG= AB= ,

∴CP=CG﹣PG= = ,

即線段CP的最小值為 ,故⑤正確;

綜上可知正確的有5個,

故選D.

【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明騎自行車上學,某天他從家出發(fā)騎行了一段路程,想起要買一本書,于是折回到他剛經(jīng)過的某書店,買到書后繼續(xù)去學校.以下是他在本次上學離家的距離與所用的時間的關系示意圖,根據(jù)圖中提供的信息解答下列問題:

(1)小明家與學校的距離是_____米.

(2)小明在書店停留了多少分鐘?

(3)A,B兩題中任選一題作答:

A.小明騎行過程中哪個時間段的速度最快,最快的速度是多少?

B.小明在這次上學過程中的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑, ,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);
②設⊙O的半徑為6,點E到直線l的距離為3,連結BD, DE,直接寫出△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組對函數(shù)y=x+ 的圖象和性質進行了探究,探究過程如下,請補充完整.

x

﹣3

﹣2

﹣1

1

2

3

y

m

﹣2

2


(1)自變量x的取值范圍是 , m=
(2)根據(jù)(1)中表內的數(shù)據(jù),在如圖所示的平面直角坐標系中描點,畫出函數(shù)圖象的一部分,請你畫出該函數(shù)圖象的另一部分.
(3)請你根據(jù)函數(shù)圖象,寫出兩條該函數(shù)的性質;
(4)進一步探究該函數(shù)的圖象發(fā)現(xiàn): ①方程x+ =3有個實數(shù)根;
②若關于x的方程x+ =t有2個實數(shù)根,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條直線被第三條直線所截,就第三條直線上的兩個交點而言形成了三線八角為了便于記憶,同學們可仿照圖用雙手表示三線八角兩大拇指代表被截直線,食指代表截線下列三幅圖依次表示  

A. 同位角、同旁內角、內錯角B. 同位角、內錯角、同旁內角

C. 同位角、對頂角、同旁內角D. 同位角、內錯角、對頂角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、點F分別是等邊△ABC的邊AB、AC上的點,且BE=AF,CEBF 相交于點P,則∠BPC的大小為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校七年級三班有50名學生,現(xiàn)對學生最喜歡的球類運動進行了調查,根據(jù)調查的結果制作了扇形統(tǒng)計圖,如圖所示.根據(jù)扇形統(tǒng)計圖中提供的信息,給出以下結論:

①最喜歡足球的人數(shù)最多,達到了15人;

②最喜歡羽毛球的人數(shù)最少,只有5人;

③最喜歡排球的人數(shù)比最喜歡乒乓球的人數(shù)少3人;

④最喜歡乒乓球的人數(shù)比最喜歡籃球的人數(shù)多6人。

其中正確的結論有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(1,0)和(0,2).

(1)當﹣2x3時,求y的取值范圍;

(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

同步練習冊答案