【題目】已知:如圖,AB為的直徑,點C是半圓上一點,CE⊥AB于E,BF∥OC,連接BC,CF.
(1)求證:∠OCF=∠ECB;
(2)當AB=10,BC=,求CF的值.
【答案】(1)證明見詳解.
(2)
【解析】
(1)延長CE交⊙O于點G,利用圓周角的性質進行解答即可.
(2)連接AC,FO,利用△AOC和△FOC均是等腰三角形并且全等,得到CF=AC,在根據(jù)AB為直徑,△ABC為直角三角形,利用勾股定理求出AC即可得到CF的長.
證明:(1)延長CE交⊙O于點G.
∵AB為⊙O的直徑,CE⊥AB于E,
∴BC=BG,
∴∠G=∠2,
∵BF∥OC,
∴∠1=∠F,
又∵∠G=∠F,
∴∠1=∠2.
即∠OCF=∠ECB.
(2)連接AC,FO
∴OA=OC=OF,∠A=∠CFB,
由(1)可知∠1=∠CFB,并△AOC和△FOC均是等腰三角形
∴∠1=∠OFC=∠A=∠ACO
在△AOC和△FOC中
OC是公共邊,∠1= =∠ACO,∠OFC=∠A
∴△AOC△FOC
∴CF=AC
∵AB為直徑
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的袋子中有四張標著數(shù)字 ,,, 的卡片,這些卡片除數(shù)字外都相同.甲同學按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.下圖是他所畫的樹狀圖的一部分.
(1)由上圖分析,甲同學的游戲規(guī)則是:從袋子中隨機抽出一張卡片后 (填"放回"或"不放回"),再隨機抽出一張卡片;
(2)幫甲同學完成樹狀圖;
(3)求甲同學兩次抽到的數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2經過點A(2,1).
(1) 求a的值;
(2) 如圖1,點M為x軸負半軸上一點,線段AM交拋物線于N.若△OMN為等腰三角形,求點N的坐標;
(3) 如圖2,直線y=kx-2k+3交拋物線于B、C兩點,過點C作CP⊥x軸,交直線AB于點P,請說明點P一定在某條確定的直線上運動,求出這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-4(k-1)x+4k2=0有兩個實數(shù)根x1、x2
(1) 求k的取值范圍
(2) 若x1x2-2|x1+x2|=4,求k的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鎮(zhèn)江某特產專賣店銷售某種特產,其進價為每千克40元,若按每千克60元出售,平均每天可售出100千克,經過市場調查發(fā)現(xiàn),單價每降低3元,平均每天的銷售量可增加30千克,專賣店銷售這種特產若想要平均每天獲利2240元,且銷售盡可能大,則每千克特產應定價為多少元?
(1)解:方法1:設每千克特產應降價x元,由題意,得方程為:_____;
方法2:設每千克特產降低后定價為x元,由題意,得方程為:_____.
(2)請你選擇一種方法,寫出完整的解答過程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com