“光華中學(xué)”有一塊梯形的草地,已知兩底分別是10m和20m,梯形中有兩個(gè)底角分別是30°和60°,請求出與底邊夾角是60°的腰長.
【答案】分析:首先根據(jù)題意作圖,然后過點(diǎn)A作AE∥CD與E,由AD∥BC,可得四邊形ADCE是平行四邊形,又由梯形中有兩個(gè)底角分別是30°和60°,易得△ABE是直角三角形,則可求得答案.
解答:解:根據(jù)題意得:AD=10m,BC=20m,∠B=60°,∠C=30°,
過點(diǎn)A作AE∥CD交CD于E,
∵AD∥BC,
∴四邊形ADCE是平行四邊形,
∴CE=AD=10m,
∴BE=BC-CE=20-10=10(m),
∵AE∥CD,
∴∠AEB=∠C=30°,
∵∠B=60°,
∴∠BAE=90°,
在Rt△ABE中,AB=BE=×10=5(m).
∴與底邊夾角是60°的腰長為5m.
點(diǎn)評:此題考查了梯形的性質(zhì),平行四邊形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度適中,解此題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

“光華中學(xué)”有一塊梯形的草地,已知兩底分別是10m和20m,梯形中有兩個(gè)底角分別是30°和60°,請求出與底邊夾角是60°的腰長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)有一塊四邊形的空地ABCD,如圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)有一塊四邊形的空地ABCD,如圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

“光華中學(xué)”有一塊梯形的草地,已知兩底分別是10m和20m,梯形中有兩個(gè)底角分別是30°和60°,請求出與底邊夾角是60°的腰長.

查看答案和解析>>

同步練習(xí)冊答案