【題目】如圖,觀察每個(gè)正多邊形中的變化情況,解答下列問(wèn)題:
……
(1)將下面的表格補(bǔ)充完整:
正多邊形的邊數(shù) | 3 | 4 | 5 | 6 | …… | |
的度數(shù) | _________ | _________ | _________ | _________ | …… | _________ |
(2)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中的?若存在,寫出的值;若不存在,請(qǐng)說(shuō)明理由.
(3)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中的?若存在,寫出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)60°,45°,36°,30°,;(2)當(dāng)多邊形是正九邊形,能使其中的;(3)不存在,理由見解析.
【解析】
(1)首先根據(jù)多邊形的內(nèi)角公式:(n-2)×180°,將n=3、4、5、6、8、12代入公式分別計(jì)算出各多邊形的內(nèi)角和;然后再根據(jù)多邊形的外角和為360°,即可得到各多邊形的內(nèi)角和,進(jìn)而完成表格.(2)依據(jù)題意得∠α=20°=,即可求出n的值。(3)依據(jù)題意∠α=21°=,求出n的值是否為正整數(shù)即可.
解:(1)填表如下:
正多邊形的邊數(shù) | 3 | 4 | 5 | 6 | …… | n |
的度數(shù) | …… |
,,,,;(可以觀察歸納出來(lái),也可以計(jì)算出來(lái)).
(2)存在一個(gè)正邊形,使其中的
理由是:根據(jù)題意得:,
解得:,
即當(dāng)多邊形是正九邊形,能使其中的;
(3)不存在,理由如下:
假設(shè)存在正邊形使得,得,
解得:,與是正整數(shù)矛盾,
所以不存在正邊形使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖1,在小正方形的頂點(diǎn)上確定一點(diǎn)C,連接AC、BC,使得△ABC為直角三角形,其面積為5,并直接寫出△ABC的周長(zhǎng);
(2)如圖2,在小正方形的頂點(diǎn)上確定一點(diǎn)D,連接AD、BD,使得△ABD中有一個(gè)內(nèi)角為45°,且面積為3.
【答案】(1)5+3;(2)3.
【解析】試題分析:(1)構(gòu)造直角三角形,AB=且是直角邊,面積是5,可以求出另外一條直角邊BC長(zhǎng)度,最后連接AC.
(2)先構(gòu)造一個(gè)45°角,再利用面積是3,可畫出圖象.
試題解析:
(1)解:如圖1所示:△ABC即為所求,
△ABC的周長(zhǎng)為: +2+5=5+3;
(2)解:如圖2所示:△ABD中,∠ADB=45°,且面積為3.
【題型】解答題
【結(jié)束】
23
【題目】為了解青少年形體情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生坐姿、站姿、走姿的好壞情況(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:
(1)求這次被抽查形體測(cè)評(píng)的學(xué)生一共有多少人?
(2)求在被調(diào)查的學(xué)生中三姿良好的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全市有5萬(wàn)名初中生,那么估計(jì)全市初中生中,坐姿和站姿不良的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)10×10網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫出△ABC關(guān)于直線l的對(duì)稱的△A1B1C1.
(2)畫出△ABC關(guān)于點(diǎn)P的中心對(duì)稱圖形△A2B2C2.
(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對(duì)稱圖形,如果是軸對(duì)稱圖形,請(qǐng)畫出對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)數(shù)的平方等于,記為,這個(gè)數(shù)叫做虛數(shù)單位.那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來(lái)就叫做復(fù)數(shù),表示為(為實(shí)數(shù)),叫這個(gè)復(fù)數(shù)的實(shí)部, 叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.
例如計(jì)算:
(1)填空: =_________, =____________.
(2)填空:①_________; ②_________ .
(3)若兩個(gè)復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問(wèn)題:已知, ,( 為實(shí)數(shù)),求的值.
(4)試一試:請(qǐng)利用以前學(xué)習(xí)的有關(guān)知識(shí)將化簡(jiǎn)成的形式.
(5)解方程:x2 - 2x +4 = 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得到△ABE,
若AF=4,AB=7.
(1)旋轉(zhuǎn)中心為______;旋轉(zhuǎn)角度為______;
(2)DE的長(zhǎng)度為______;
(3)指出BE與DF的位置關(guān)系如何?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F,AB=6cm,AD=8cm.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過(guò)點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連結(jié)FG交BD于點(diǎn)O.判斷四邊形FBGD的形狀,并說(shuō)明理由.
(3)在(2)的條件下,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖矩形ABCD中,AB=3cm,AD=9cm,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF.
(1)求證:BE=BF;
(2)求△ABE的面積;
(3)求折痕EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號(hào),立即出發(fā),沿北偏東67°方向航行10海里到達(dá)小島C處,將人員撤離到碼頭A張東方向的碼頭B,測(cè)得小島C位于碼頭B西北方向,求碼頭B與小島C的距離(結(jié)果精確到0.1海里).【參考數(shù)據(jù):sin23°=0.39,cos23°=0.92,tan23°=0.42, =1.41】
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com