精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

【答案】
(1)

解:令y=0得﹣ x2 x+2=0,

∴x2+2x﹣8=0,

x=﹣4或2,

∴點A坐標(2,0),點B坐標(﹣4,0),

令x=0,得y=2,

∴點C坐標(0,2)


(2)

解:由圖象可知AB只能為平行四邊形的邊,

∵AB=EF=6,對稱軸x=﹣1,

∴點E的橫坐標為﹣7或5,

∴點E坐標(﹣7,﹣ )或(5,﹣ ),此時點F(﹣1,﹣ ),∴以A,B,E,F(xiàn)為頂點的平行四邊形的面積=6× =


(3)

如圖所示,

①當C為頂點時,CM1=CA,CM2=CA,作M1N⊥OC于N,

在RT△CM1N中,CN= = ,

∴點M1坐標(﹣1,2+ ),點M2坐標(﹣1,2﹣ ).

②當M3為頂點時,∵直線AC解析式為y=﹣x+1,

線段AC的垂直平分線為y=x,

∴點M3坐標為(﹣1,﹣1).

③當點A為頂點的等腰三角形不存在.

綜上所述點M坐標為(﹣1,﹣1)或(﹣1,2+ )或(﹣1.2﹣ ).


【解析】(1)分別令y=0,x=0,即可解決問題.(2)由圖象可知AB只能為平行四邊形的邊,易知點E坐標(﹣7,﹣ )或(5,﹣ ),由此不難解決問題.(3)分A、C、M為頂點三種情形討論,分別求解即可解決問題.本題考查二次函數綜合題、平行四邊形的判定和性質、勾股定理等知識,解題的關鍵是熟練掌握拋物線與坐標軸交點的求法,學會分類討論的思想,屬于中考壓軸題.
【考點精析】根據題目的已知條件,利用勾股定理的概念和平行四邊形的判定與性質的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點A在∠O的一邊OA上.按要求畫圖并填空:

(1)過點A畫直線ABOA,與∠O的另一邊相交于點B;過點AOB的垂線段AC,垂足為點C;過點C畫直線CDOA,交直線AB于點D。

(2)CDB=________°;

(3)如果OA=8,AB=6,OB=10,則點A到直線OB的距離為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調查.關于酒駕設計了如下調查問卷:

克服酒駕﹣﹣你認為哪種方式最好?(單選)

A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”.

C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴厲打擊酒駕.

E查出酒駕追究一同就餐人的連帶責任.

隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:

根據上述信息,解答下列問題:

(1)本次調查的樣本容量是多少?

(2)補全條形圖,并計算B選項所對應扇形圓心角的度數;

(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某運動員在一場籃球比賽中的技術統(tǒng)計如表所示:

技術

上場時間(分鐘)

出手投籃(次)

投中
(次)

罰球得分

籃板
(個)

助攻(次)

個人總得分

數據

46

66

22

10

11

8

60

注:表中出手投籃次數和投中次數均不包括罰球.
根據以上信息,求本場比賽中該運動員投中2分球和3分球各幾個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質地均勻的硬幣100次,正面朝上的次數一定為50次

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數y=2x+4

(1)在如圖所示的平面直角坐標系中,畫出函數的圖象;

2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+c(a≠0)經過原點,頂點為A(h,k)(h≠0).
(1)當h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經過A點,求a與t之間的關系式;
(3)當點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在ABCD中,ABC=60°,且AB=BC,MAN=60°.請?zhí)剿鰾M,DN與AB的數量關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案