【題目】如圖,長(zhǎng)方形紙片ABCD中,AB6 cm,BC8 cm,點(diǎn)EBC邊上一點(diǎn),連接AE,并將AEB沿AE折疊,得到AEB′,以C,EB′為頂點(diǎn)的三角形是直角三角形時(shí),BE的長(zhǎng)為____cm.

【答案】3或6

【解析】試題解析:①∠B′EC=90°時(shí),如圖1,∠BEB′=90°,


由翻折的性質(zhì)得∠AEB=AEB=×90°=45°,
∴△ABE是等腰直角三角形,
BE=AB=6cm
②∠EBC=90°時(shí),如圖2,
由翻折的性質(zhì)∠AB′E=B=90°,
A、B′C在同一直線上,
AB′=AB,BE=B′E
由勾股定理得,AC==10cm,
BC=10-6=4cm,
設(shè)BE=B′E=x,則EC=8-x
RtBEC中,B′E2+B′C2=EC2,
x2+42=8-x2,
解得x=3,
BE=3cm,
綜上所述,BE的長(zhǎng)為36cm
故答案為:36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與射線CF相交于點(diǎn)G.
(1)若點(diǎn)D在線段BC上,如圖1.

①依題意補(bǔ)全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點(diǎn)D在線段BC的延長(zhǎng)線上,且G為CF中點(diǎn),連接GE,AB= ,則GE的長(zhǎng)為 ,并簡(jiǎn)述求GE長(zhǎng)的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,轉(zhuǎn)盤(pán)被等分成八個(gè)扇形,并在上面依次標(biāo)有數(shù)字1,2,3,4,5,6,7,8.

(1)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針指向的數(shù)正好能整除8的概率是多少?

(2)請(qǐng)你用這個(gè)轉(zhuǎn)盤(pán)設(shè)計(jì)一個(gè)游戲,當(dāng)自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止時(shí),指針指向的區(qū)域的概率為.(注:指針指在邊緣處,要重新轉(zhuǎn),直至指到非邊緣處)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī)已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元.

若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)研究一下商場(chǎng)的進(jìn)貨方案;

若商場(chǎng)銷(xiāo)售一臺(tái)甲種電視機(jī)可獲利150元,銷(xiāo)售一臺(tái)乙種電視機(jī)可獲利200元,銷(xiāo)售一臺(tái)丙種電視機(jī)可獲利250在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)電視機(jī)的方案中,為使銷(xiāo)售時(shí)獲利最多,你選擇哪種進(jìn)貨方案;

若商場(chǎng)準(zhǔn)備用9萬(wàn)元同時(shí)購(gòu)進(jìn)三種不同的電視機(jī)50臺(tái),請(qǐng)你設(shè)計(jì)進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DGBC且平分BCDEABE,DFACF

(1) 說(shuō)明BECF的理由

(2) 如果ABa,ACb,求AE、BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】任何一個(gè)正整數(shù)n都可以寫(xiě)成兩個(gè)正整數(shù)相乘的形式,對(duì)于兩個(gè)因數(shù)的差的絕對(duì)值最小的一種分解a=m×n(m≤n)可稱(chēng)為正整數(shù)a的最佳分解,并記作F(a)= .如:12=1×12=2×6=3×4,則F(12)= .則在以下結(jié)論:

①F(5)=5;②F(24)= ;

③若a是一個(gè)完全平方數(shù),則F(a)=1;

④若a是一個(gè)完全立方數(shù),即a=x3(x是正整數(shù)),

則F(a)=x.則正確的結(jié)論有________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有職工200人,其中青年職工(20﹣35歲),中年職工(35﹣50歲),老年職工(50歲及 以上)所占比例如扇形統(tǒng)計(jì)圖所示. 為了解該單位職工的健康情況,小張、小王和小李各自對(duì)單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3.
表1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

表2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

表3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問(wèn)題:

(1)小張、小王和小李三人中,誰(shuí)的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡(jiǎn)要說(shuō)明其他兩位同學(xué)抽樣調(diào)查的不足之處.
(2)根據(jù)能夠較好地反映出該單位職工健康情況表,繪制出青年職工、中年職工、老年職工健康指數(shù)的平均數(shù)的直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點(diǎn)P從A點(diǎn)出發(fā),沿折線AB→BC→CD運(yùn)動(dòng),到點(diǎn)D時(shí)停止,已知△PAD的面積s與點(diǎn)P運(yùn)動(dòng)的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開(kāi)始到停止運(yùn)動(dòng)的總路程為( )

A.4
B.2+
C.5
D.4+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ÷(a+2﹣ ),其中x2﹣2 x+a=0有兩個(gè)不相等的實(shí)數(shù)根,且a為非負(fù)整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案