【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

[來

根據(jù)以上信息,解答下列問題:

(1)設(shè)租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出關(guān)于的函數(shù)表達式;

(2)請你幫助小明計算并選擇哪個出游方案合算。

【答案】(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)當租車時間為小時,選擇甲乙公司一樣合算;當租車時間小于小時,選擇乙公司合算;當租車時間大于小時,選擇甲公司合算.

【解析】

試題分析:(1)根據(jù)函數(shù)圖象中的信息,分別運用待定系數(shù)法求得y1,y2關(guān)于x的函數(shù)表達式即可;

(2)當y1=y2時,15x+80=30x,當y>y2時,15x+80>30x,當y1<y2時,15x+80<30x,分別求解即可.

試題解析: (1)設(shè)y1=k1x+80,

把點(1,95)代入,可得

95=k1+80,

解得k1=15,

y1=15x+80(x≥0);

設(shè)y2=k2x,

把(1,30)代入,可得

30=k2,即k2=30,

y2=30x(x≥0);

(2)當y1=y2時,15x+80=30x,

解得x=;

當y1>y2時,15x+80>30x,

解得x<;

當y1<y2時,15x+80>30x,

解得x>

當租車時間為小時,選擇甲乙公司一樣合算;當租車時間小于小時,選擇乙公司合算;當租車時間大于小時,選擇甲公司合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.

1)圖2的陰影部分的正方形的邊長是 ______

2)用兩種不同的方法求圖中陰影部分的面積.

(方法1= _____________;

(方法2=______________

3)觀察如圖2,寫出(a+b2,(a-b2ab這三個代數(shù)式之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K-∠H33°,則∠K__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某軟件科技公司20人負責研發(fā)與維護游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.

根據(jù)以上信息,網(wǎng)答下列問題

(1)直接寫出圖中a,m的值;

(2)分別求網(wǎng)購與視頻軟件的人均利潤;

(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1中的長方形長為寬的3倍,將四個這樣的長方形拼成圖2中的大正方形.

1)若中間小正方形的面積是,問圖1中的長方形的面積是多少?

2)若大正方形的面積就比小正方形的面積大,求中間小正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在邊長為1的小正方形的格點上.請你在圖中找出一點D(僅一個點即可),連結(jié)DE,DF,使△DEF與△ABC全等,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲同學(xué)手中藏有三張分別標有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與直線y=﹣x+3相交于坐標軸上的A,B兩點,頂點為C.

(1)填空:b= , c=;
(2)將直線AB向下平移h個單位長度,得直線EF.當h為何值時,直線EF與拋物線y=x2+bx+c沒有交點?
(3)直線x=m與△ABC的邊AB,AC分別交于點M,N.當直線x=m把△ABC的面積分為1:2兩部分時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用1來表示的小數(shù)部分,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分又例如:因為,即23,所以的整數(shù)部分為2,小數(shù)部分為(2

請解答:

1的整數(shù)部分是   ,小數(shù)部分是   ;

2)如果的小數(shù)部分為a的整數(shù)部分為b,求a+b的值.

查看答案和解析>>

同步練習(xí)冊答案