在Rt△ABC中,∠C=90°,AC=1,BC=,點O為Rt△ABC內一點,連接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求畫圖(保留畫圖痕跡):
以點B為旋轉中心,將△AOB繞點B順時針方向旋轉60°,得到△A′O′B(得到A、O的對應點分別為點A′、O′),并回答下列問題:
∠ABC= ,∠A′BC= ,OA+OB+OC= .
考點:
作圖-旋轉變換.
專題:
作圖題.
分析:
解直角三角形求出∠ABC=30°,然后過點B作BC的垂線,在截取A′B=AB,再以點A′為圓心,以AO為半徑畫弧,以點B為圓心,以BO為半徑畫弧,兩弧相交于點O′,連接A′O′、BO′,即可得到△A′O′B;根據旋轉角與∠ABC的度數,相加即可得到∠A′BC;
根據直角三角形30°角所對的直角邊等于斜邊的一半求出AB=2AC,即A′B的長,再根據旋轉的性質求出△BOO′是等邊三角形,根據等邊三角形的三條邊都相等可得BO=OO′,等邊三角形三個角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四點共線,再利用勾股定理列式求出A′C,從而得到OA+OB+OC=A′C.
解答:
解:∵∠C=90°,AC=1,BC=,
∴tan∠ABC===,
∴∠ABC=30°,
∵△AOB繞點B順時針方向旋轉60°,
∴△A′O′B如圖所示;
∠A′BC=∠ABC+60°=30°+60°=90°,
∵∠C=90°,AC=1,∠ABC=30°,
∴AB=2AC=2,
∵△AOB繞點B順時針方向旋轉60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等邊三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四點共線,
在Rt△A′BC中,A′C===,
∴OA+OB+OC=A′O′+OO′+OC=A′C=.
故答案為:30°;90°;.
點評:
本題考查了利用旋轉變換作圖,旋轉變換的性質,直角三角形30°角所對的直角邊等于斜邊的一半的性質,勾股定理,等邊三角形的判定與性質,綜合性較強,最后一問求出C、O、A′、O′四點共線是解題的關鍵.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com