【題目】已知:如圖,AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點(diǎn),ED與AB的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:DE為⊙O的切線.
(2)求證:DF2=BFAF.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)連AD,OD,則∠ADB=∠ADC=90°,由直角三角形斜邊上的中線性質(zhì)得:EA=ED,∠EDA=∠EAD,由等腰三角形的性質(zhì)得:∠ODA=∠OAD,證得∠EDO=∠EAO,即可得出結(jié)論;
(2)證明:由切線的性質(zhì)得:∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,證出∠FDB=∠FAD,∠F為公共角,得出△FDB∽△FAD,由對(duì)應(yīng)邊成比例即可得出結(jié)論.
(1)證明:連AD,OD,如圖所示:
∵AB為⊙O的直徑,
∴∠ADB=∠ADC=90°,
∵E是AC的中點(diǎn),
∴EA=ED,
∴∠EDA=∠EAD,
∵OD=OA,
∴∠ODA=∠OAD,
∴∠EDO=∠EAO,
∵AB⊥AC,
∴∠EAO=90°,
∴∠EDO=90°,
∴DE為⊙O的切線;
(2)證明:∵DE為⊙O的切線,
∴∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠FDB=∠FAD,
又∵∠F為公共角,
∴△FDB∽△FAD,
∴=,
∴DF2=BFAF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車剎車后,還會(huì)繼續(xù)向前滑行一段距離,這段距離稱為“剎車距離”剎車距離y(m)與剎車時(shí)的車速x(km/h)的部分關(guān)系如表:
剎車時(shí)的車速 | 0 | 50 | 100 | 200 |
剎車距離 | 0 | 5.5 | 46.5 | 82 |
(1)求出y與x之間的函數(shù)關(guān)系式.
(2)一輛車在限速120km/h的高速公路上行駛時(shí)出了事故,事后測(cè)得它的剎車距離為40.6m,問:該車在發(fā)生事故時(shí)是否超速行駛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件;如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)設(shè)每月的銷售利潤(rùn)為W,請(qǐng)直接寫出W與x的函數(shù)關(guān)系式;
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌的洗衣機(jī)在市場(chǎng)上享有美譽(yù),市場(chǎng)標(biāo)價(jià)為元,進(jìn)價(jià)為元,市場(chǎng)調(diào)研發(fā)現(xiàn),若在市場(chǎng)價(jià)格的基礎(chǔ)上降價(jià)會(huì)引起銷售量的增加,當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái);當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái).若月銷售量(臺(tái))與銷售價(jià)格(元)滿足一次函數(shù)關(guān)系.
(1)求與之間的函數(shù)關(guān)系式;
(2)公司決定采取降價(jià)促銷,迅速占領(lǐng)市場(chǎng)的方案,請(qǐng)根據(jù)以上信息,判斷當(dāng)銷售價(jià)格定為多少元時(shí),公司的月利潤(rùn)最大,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C'處,連接C'D交AB于點(diǎn)E,連接BC',當(dāng)△BC'D是直角三角形時(shí),DE的長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西寧教育局在局屬各初中學(xué)校設(shè)立“自主學(xué)習(xí)日”.規(guī)定每周三學(xué)校不得以任何形式布置家庭作業(yè),為了解各學(xué)校的落實(shí)情況,從七、八年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生的反饋表.針對(duì)以下六個(gè)項(xiàng)目(每人只能選一項(xiàng)):.課外閱讀;.家務(wù)勞動(dòng);.體育鍛煉;.學(xué)科學(xué)習(xí);.社會(huì)實(shí)踐;.其他項(xiàng)目進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)此次抽查的樣本容量為____________,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)全市約有4萬名在校初中學(xué)生,試估計(jì)全市學(xué)生中選擇體育鍛煉的人數(shù)約有多少人?
(3)七年級(jí)(1)班從選擇社會(huì)實(shí)踐的2名女生和1名男生中選派2名參加校級(jí)社會(huì)實(shí)踐活動(dòng).請(qǐng)你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?并列舉出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為1,G為CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DE交BG的延長(zhǎng)線于點(diǎn)H.
(1)求證:①△BCG≌△DCE;②BH⊥DE.
(2)當(dāng)點(diǎn)G運(yùn)動(dòng)到什么位置時(shí),BH垂直平分DE?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶葉經(jīng)銷商以每千克18元的價(jià)格購進(jìn)一批寧波白茶鮮茶葉加工后出售, 已知加工過程中質(zhì)量損耗了40%, 該商戶對(duì)該茶葉試銷期間, 銷售單價(jià)不低于成本單價(jià),且每千克獲利不得高于成本單價(jià)的60%,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價(jià)x(元/千克)符合一次函數(shù),且x=35時(shí),y=45;x=42時(shí),y=38.
(1)求一次函數(shù)的表達(dá)式;
(2)若該商戶每天獲得利潤(rùn)(不計(jì)加工費(fèi)用)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)每千克定為多少元時(shí),商戶每天可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該商戶每天獲得利潤(rùn)不低于225元,試確定銷售單價(jià)x的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com