已知a、b、c均為實數(shù)且數(shù)學(xué)公式,求方程ax2+bx+c=0的根.

解:依題意得:a2-2a+1=0且b+1=0且c+3=0
∴a=1,b=-1,c=-3,
代入方程可得:x2-x-3=0
∴x=
分析:本題可根據(jù)“非負(fù)數(shù)相加和為0時,則必滿足其中的每一項都等于0”解出a、b、c的值,再把它們代入方程中,運用公式法解出x的值.
點評:本題考查了非負(fù)數(shù)的性質(zhì),初中階段有三種類型的非負(fù)數(shù):(1)絕對值;(2)偶次方;(3)二次根式(算術(shù)平方根).當(dāng)它們相加和為0時,必須滿足其中的每一項都等于0.根據(jù)這個結(jié)論可以求解這類題目.
本題還考查了一元二次方程的解法.解一元二次方程常用的方法,要根據(jù)方程的特點靈活選用合適的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
1
4
x2-2
a
x+(a+1)2=0
有實根.
(1)求a的值;
(2)若關(guān)于x的方程mx2+(1-m)x-a=0的所有根均為整數(shù),求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2,f(x)=x的兩實根為α、β.
(1)若|α-β|=1,求a、b滿足的關(guān)系式;
(2)若a、b均為負(fù)整數(shù),且|α-β|=1,求f(x)解析式;
(3)試比較(x1+1)(x2+1)與7的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程x2+kx-1=0.
(1)求證:不論k為何值,方程均有兩不等實根;
(2)已知方程的兩根之和為2,求k的值及方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2003•河南)為了了解中學(xué)生的身體素質(zhì)情況,現(xiàn)抽取了某校實初中三年級50名學(xué)生,對每各學(xué)生進(jìn)行了100米跑,立定跳遠(yuǎn)、擲鉛球三個項目的測試,每個項目滿分10分,圖為將學(xué)生所得的三項成績(成績均為整數(shù))之和進(jìn)行整理后,分成五組畫出頻率分布直方圖.已知從左到右前四個小組的頻率分別是0.02,0.1,0.12,0,46,根據(jù)已知條件及圖形提供的信息下列問題:
①每五小組的頻數(shù)是多少?
②如果23分(包括23)以上表明身體素質(zhì)良好,那么身體素質(zhì)良好的學(xué)生占全部測試學(xué)生百分率是多少?
③在這次測試中,學(xué)生成績的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的方程有實根.
(1)求的值;
(2)若關(guān)于的方程的所有根均為整數(shù),求整數(shù)的值

查看答案和解析>>

同步練習(xí)冊答案