分析 (1)要尋找3條線段的數(shù)量關(guān)系,往往采用作輔助線截長或補短的方法,然后找到其中的關(guān)系,本題證明三角形全等是關(guān)鍵;
(2)由(1)可知DE=FG,∴△DGF的底與高可以關(guān)鍵勾股定理用含x的式子表示出來,所以解析式就可以表示出來;
(3)要解決本題,關(guān)鍵題意作出輔助線是關(guān)鍵,利用三角形的面積公式建立兩個不同的式子是問題解決.
解答 解:(1)BF+AG=AE.
證明:如圖1,過點F作FH⊥DA,垂足為H,
∵在正方形ABCD中,∠DAE=∠B=90°,
∴四邊形ABFH是矩形,
∴FH=AB=DA,
∵DE⊥FG,
∴∠G=90°-∠ADE=∠DEA,
又∴∠DAE=∠FHG=90°,
∴△FHG≌△DAE,
∴GH=AE,即HA+AG=AE,
∵BF=HA,
∴BF+AG=AE.
(2)∵△FHG≌△DAE,
∴FG=DE=$\sqrt{A{D}^{2}+A{E}^{2}}$=$\sqrt{4+{x}^{2}}$,
∵S△DGF=$\frac{1}{2}$FG•DE,
∴y=$\frac{4+{x}^{2}}{2}$,
∴解析式為:y=$\frac{4+{x}^{2}}{2}$,函數(shù)自變量的取值范圍為0<x<2;
(3)如圖2,連接CE,作CP⊥DE于P,S△CDE=$\frac{1}{2}$×CD•AD=2,
∴S△CDE=$\frac{1}{2}$×DE•CP=2,
∵DE=FG=$\frac{5}{2}$,
∴$\frac{1}{2}$•$\frac{5}{2}$•CP=2,
∴CP=$\frac{8}{5}$,
∴點C到直線DE的距離為$\frac{8}{5}$.
點評 此題主要考查了全等三角形的判定與性質(zhì),根據(jù)已知得出∠G=∠DEA,進而得出△FHG≌△DAE是解決問題的關(guān)鍵.作輔助線是難點.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com