【題目】某商場(chǎng)準(zhǔn)備采購(gòu)一批特色商品,經(jīng)調(diào)查,用5000元采購(gòu)型商品的件數(shù)是用2000元采購(gòu)型商品的件數(shù)的2倍,一件型商品的進(jìn)價(jià)比一件型商品的進(jìn)價(jià)多10元.
(1)求一件,型商品的進(jìn)價(jià)分別為多少元?
(2)若該商場(chǎng)購(gòu)進(jìn),型商品共200件進(jìn)行試銷(xiāo),其中型商品的件數(shù)不大于型商品的件數(shù),且不小于80件.已知型商品的售價(jià)為80元/件,型商品的售價(jià)為60元/件,且,型商品均全部售出.設(shè)購(gòu)進(jìn)型商品件,求該商場(chǎng)銷(xiāo)售完這批商品的利潤(rùn)與之間的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(3)在(2)的條件下,商場(chǎng)決定在試銷(xiāo)活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金元,若該商場(chǎng)售完、型所有商品并捐獻(xiàn)資金后獲得的最大收益是4800元,求出值.
【答案】(1)一件型商品的進(jìn)價(jià)為40元,則一件型商品的進(jìn)價(jià)為50元;(2),;(3)值為2
【解析】
(1)設(shè)一件B型商品的進(jìn)價(jià)為x元,則一件A型商品的進(jìn)價(jià)為(x+10)元.根據(jù)5000元采購(gòu)A型商品的件數(shù)是用2000元采購(gòu)B型商品的件數(shù)的2倍,列出方程即可解決問(wèn)題;
(2)根據(jù)總利潤(rùn)=兩種商品的利潤(rùn)之和,列出式子即可解決問(wèn)題;
(3)設(shè)利潤(rùn)為w元.則,分三種情形討論即可解決問(wèn)題,把w=4800代入解答即可.
解:(1)設(shè)一件型商品的進(jìn)價(jià)為元,則一件型商品的進(jìn)價(jià)為元,
由題意:,
解得:,
檢驗(yàn):把代入,∴是分式方程的解,
(元)
答:一件型商品的進(jìn)價(jià)為40元,則一件型商品的進(jìn)價(jià)為50元;
(2)因?yàn)樯虉?chǎng)購(gòu)進(jìn)型商品件,所以購(gòu)進(jìn)型商品件,
由題意:,
∵,∴;
(3)設(shè)利潤(rùn)為元,
,
①當(dāng)時(shí),即時(shí),隨的增大而增大,
所以時(shí),最大利潤(rùn)為:
∴,解得
②當(dāng)時(shí),最大利潤(rùn)為4000元,不合題意
③當(dāng)時(shí),即時(shí),隨的增大而減小,
所以時(shí),最大利潤(rùn)為元
,
解得(不合題意,舍去)
答:若該商場(chǎng)售完、型所有商品并捐獻(xiàn)資金后獲得的最大收益是4800元,則值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線(xiàn)段DG與BE之間的數(shù)量關(guān)系是 ;
②直線(xiàn)DG與直線(xiàn)BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),上述結(jié)論是否成立,并說(shuō)明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo),則方程的實(shí)根x0所在的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=7,點(diǎn)E是AD上一個(gè)動(dòng)點(diǎn),把△BAE沿BE向矩形內(nèi)部折疊,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A1恰好落在∠BCD 的平分線(xiàn)上時(shí),CA1的長(zhǎng)為( )
A、3或4 B、4或3 C、3或4 D、3或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班的同學(xué)想測(cè)量一教樓AB的高度.如圖,大樓前有一段斜坡,已知的長(zhǎng)為16米,它的坡度.在離點(diǎn)45米的處,測(cè)得一教樓頂端的仰角為,則一教樓的高度約( )米(結(jié)果精確到0.1米)(參考數(shù)據(jù):,,,)
A. 44.1 B. 39.8 C. 36.1 D. 25.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2019年端午節(jié)前夕,某商場(chǎng)投入13800元資金購(gòu)進(jìn)甲、乙兩種商品共500件,兩種商品的成本價(jià)和銷(xiāo)售價(jià)如下表所示:
商品 單價(jià)(元/件) | 成本價(jià) | 銷(xiāo)售價(jià) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購(gòu)進(jìn)兩種商品各多少件?
(2)這批商品全部銷(xiāo)售完后,該商場(chǎng)共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線(xiàn)y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線(xiàn)與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+6(a≠0)交x軸于A(﹣4,0),B(2,0),在y軸上有一點(diǎn)E(0,﹣2),連接AE.
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)D是第二象限內(nèi)的拋物線(xiàn)上一動(dòng)點(diǎn).
①求△ADE面積最大值并寫(xiě)出此時(shí)點(diǎn)D的坐標(biāo);
②若tan∠AED=,求此時(shí)點(diǎn)D坐標(biāo);
(3)連接AC,點(diǎn)P是線(xiàn)段CA上的動(dòng)點(diǎn),連接OP,把線(xiàn)段PO繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至PQ,點(diǎn)Q是點(diǎn)O的對(duì)應(yīng)點(diǎn).當(dāng)動(dòng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A,則動(dòng)點(diǎn)Q所經(jīng)過(guò)的路徑長(zhǎng)等于 (直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績(jī),制作成直方圖(如圖).
(1)分?jǐn)?shù)段在-----范圍的人數(shù)最多;
(2)全校共有多少人參加比賽?
(3)學(xué)校決定選派本次比賽成績(jī)最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準(zhǔn)備了紅、藍(lán)、白顏色的上衣各1件和2條白色、1條藍(lán)色的褲子.請(qǐng)用“列表法”或“樹(shù)形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com