【題目】如圖,將正方形ABCD折疊,使點(diǎn)A與CD邊上的點(diǎn)H重合(H不與C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD周長(zhǎng)為m,△CHG周長(zhǎng)為n,則為( )
A.B.C.D.
【答案】B
【解析】
設(shè)DE=x,DH=y,根據(jù)正方形的周長(zhǎng)公式和正方形的性質(zhì)可得AD=DC=,∠EDH=∠HCG=∠A=90°,由折疊的性質(zhì)可得AE=EH=AD-DE=,∠EHG=∠A=90°,利用相似三角形的判定可得△DEH∽△CHG,列出比例式,然后根據(jù)三角形的周長(zhǎng)公式即可列出第一個(gè)等式,然后根據(jù)勾股定理即可列出第二個(gè)等式,然后聯(lián)立即可求出結(jié)論.
解:設(shè)DE=x,DH=y
∵正方形的周長(zhǎng)為m
∴AD=DC=,∠EDH=∠HCG=∠A=90°
根據(jù)折疊的性質(zhì)可知AE=EH=AD-DE=,∠EHG=∠A=90°
∴∠DEH+∠DHE=90°,∠CHG+∠DHE=90°
∴∠DEH=∠CHG
∴△DEH∽△CHG
∴
即
解得:
∵△CHG周長(zhǎng)為n
∴CH+CG+HG=n
即
整理,得①
在Rt△EDH中,DE2+DH2=EH2
整理,得②
將②代入①,得
解得:
∴
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綿陽(yáng)某公司銷(xiāo)售統(tǒng)計(jì)了每個(gè)銷(xiāo)售員在某月的銷(xiāo)售額,繪制了如下折線(xiàn)統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷(xiāo)售員的月銷(xiāo)售額為x(單位:萬(wàn)元)。銷(xiāo)售部規(guī)定:當(dāng)x<16時(shí),為“不稱(chēng)職”,當(dāng) 時(shí)為“基本稱(chēng)職”,當(dāng) 時(shí)為“稱(chēng)職”,當(dāng) 時(shí)為“優(yōu)秀”.根據(jù)以上信息,解答下列問(wèn)題:
(1)補(bǔ)全折線(xiàn)統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)求所有“稱(chēng)職”和“優(yōu)秀”的銷(xiāo)售員銷(xiāo)售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)銷(xiāo)售員的積極性,銷(xiāo)售部決定制定一個(gè)月銷(xiāo)售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷(xiāo)售額達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的銷(xiāo)售員將獲得獎(jiǎng)勵(lì)。如果要使得所有“稱(chēng)職”和“優(yōu)秀”的銷(xiāo)售員的一半人員能獲獎(jiǎng),月銷(xiāo)售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元(結(jié)果去整數(shù))?并簡(jiǎn)述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)某種茶壺、茶杯共200個(gè)進(jìn)行銷(xiāo)售,其中茶杯的數(shù)量是茶壺?cái)?shù)量的5倍還多20個(gè).銷(xiāo)售方式有兩種:(1)單個(gè)銷(xiāo)售;(2)成套銷(xiāo)售.相關(guān)信息如下表:
進(jìn)價(jià)(元/個(gè)) | 單個(gè)售價(jià)(元/個(gè)) | 成套售價(jià)(元/套) | |
茶壺 | 24 | a | 55 |
茶杯 | 4 | a﹣30 | |
備注:(1)一個(gè)茶壺和和四個(gè)茶杯配成一套(如圖); (2)利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×數(shù)量 |
(1)該商店購(gòu)進(jìn)茶壺和茶杯各有多少個(gè)?
(2)已知甲顧客花180元購(gòu)買(mǎi)的茶壺?cái)?shù)量與乙顧客花30元購(gòu)買(mǎi)的茶杯數(shù)量相同.
①求表中a的值.
②當(dāng)該商店還剩下20個(gè)茶壺和100個(gè)茶杯時(shí),商店將這些茶壺和茶杯中的一部分按成套銷(xiāo)售,其余按單個(gè)銷(xiāo)售,這120個(gè)茶壺和茶杯全部售出后所得的利潤(rùn)為365元.問(wèn)成套銷(xiāo)售了多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點(diǎn)B,C位于x軸上方,將直線(xiàn)l:y=x﹣3沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度平移,在平移的過(guò)程中,該直線(xiàn)被正方形ABCD的邊所截得的線(xiàn)段長(zhǎng)為m,平移的時(shí)間為t秒,m與t的函數(shù)圖象如圖2所示,則a,b的值分別是( 。
A.6,B.6,C.7,7D.7,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥品生產(chǎn)基地共有5條生產(chǎn)線(xiàn),每條生產(chǎn)線(xiàn)每月生產(chǎn)藥品20萬(wàn)盒,該基地打算從第一個(gè)月開(kāi)始到第五個(gè)月結(jié)束,對(duì)每條生產(chǎn)線(xiàn)進(jìn)行升級(jí)改造.改造時(shí),每個(gè)月只升級(jí)改造一條生產(chǎn)線(xiàn),這條生產(chǎn)線(xiàn)當(dāng)月停產(chǎn),并于下個(gè)月投入生產(chǎn),其他生產(chǎn)線(xiàn)則正常生產(chǎn).經(jīng)調(diào)查,每條生產(chǎn)線(xiàn)升級(jí)改造后,每月的產(chǎn)量會(huì)比原來(lái)提高20%.
(1)根據(jù)題意,完成下面問(wèn)題:
①把下表補(bǔ)充完整(直接寫(xiě)在橫線(xiàn)上):
月數(shù) | 第1個(gè)月 | 第2個(gè)月 | 第3個(gè)月 | 第4個(gè)月 | 第5個(gè)月 | 第6個(gè)月 | … |
產(chǎn)量/萬(wàn)盒 |
|
|
| 92 | … | … | … |
②從第1個(gè)月進(jìn)行升級(jí)改造后,第 個(gè)月的產(chǎn)量開(kāi)始超過(guò)未升級(jí)改造時(shí)的產(chǎn)量;
(2)若該基地第x個(gè)月(1≤x≤5,且x是整數(shù))的產(chǎn)量為y萬(wàn)盒,求y關(guān)于x的函數(shù)關(guān)系式;
(3)已知每條生產(chǎn)線(xiàn)的升級(jí)改造費(fèi)是30萬(wàn)元,每盒藥品可獲利3元.設(shè)從第1個(gè)月開(kāi)始升級(jí)改造后,生產(chǎn)藥品所獲總利潤(rùn)為W1萬(wàn)元;同時(shí)期內(nèi),不升級(jí)改造所獲總利潤(rùn)為W2萬(wàn)元設(shè)至少到第n個(gè)月(n為正整數(shù))時(shí),W1大于W2,求n的值.(利潤(rùn)=獲利﹣改造費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷(xiāo)售,成本價(jià)與出廠(chǎng)價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷(xiāo)售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠(chǎng)價(jià)為每件元,每月銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)之間的關(guān)系近似滿(mǎn)足一次函數(shù):.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷(xiāo)售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門(mén)規(guī)定,這種節(jié)能燈的銷(xiāo)售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為所在圓的圓心,∠AOB=90°,點(diǎn)P在上運(yùn)動(dòng)(不與點(diǎn)A,B重合),AP交OB延長(zhǎng)線(xiàn)于點(diǎn)C,CD⊥OP于點(diǎn)D.若OB=2BC=2,則PD的長(zhǎng)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
九年級(jí)數(shù)學(xué)興趣小組組織了以“等積變形”為主題的課題研究.
第一學(xué)習(xí)小組發(fā)現(xiàn):如圖(1),點(diǎn)A、點(diǎn)B在直線(xiàn)l1上,點(diǎn)C、點(diǎn)D在直線(xiàn)l2上,若l1∥l2,則S△ABC=S△ABD;反之亦成立.
第二學(xué)習(xí)小組發(fā)現(xiàn):如圖(2),點(diǎn)P是反比例函數(shù)上任意一點(diǎn),過(guò)點(diǎn)P作x軸、y軸的垂線(xiàn),垂足為M、N,則矩形OMPN的面積為定值|k|.
請(qǐng)利用上述結(jié)論解決下列問(wèn)題:
(1)如圖(3),四邊形ABCD、與四邊形CEFG都是正方形點(diǎn)E在CD上,正方形ABCD邊長(zhǎng)為2,則=_________.
(2)如圖(4),點(diǎn)P、Q在反比例函數(shù)圖象上,PQ過(guò)點(diǎn)O,過(guò)P作y軸的平行線(xiàn)交x軸于點(diǎn)H,過(guò)Q作x軸的平行線(xiàn)交PH于點(diǎn)G,若=8,則=_________,k=_________.
(3)如圖(5)點(diǎn)P、Q是第一象限的點(diǎn),且在反比例函數(shù)圖象上,過(guò)點(diǎn)P作x軸垂線(xiàn),過(guò)點(diǎn)Q作y軸垂線(xiàn),垂足分別是M、N,試判斷直線(xiàn)PQ與直線(xiàn)MN的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com