【題目】在數(shù)軸上點A表示整數(shù)a,且,點B表示a的相反數(shù).
(1)畫數(shù)軸,并在數(shù)軸上標(biāo)出點A與點B;
(2)點P, Q 在線段AB上,且點P在點Q的左側(cè),若P, Q兩點沿數(shù)軸相向勻速運動,出發(fā)后經(jīng)4秒兩點相遇. 已知在相遇時點Q比點P多行駛了3個單位,相遇后經(jīng)1秒點Q到達點P的起始位置. 問點P、Q運動的速度分別是每秒多少個單位;.
(3)在(2)的條件下,若點P從整數(shù)點出發(fā),當(dāng)運動時間為t秒時(t是整數(shù)),將數(shù)軸折疊,使A點與B點重合,經(jīng)過折疊P點與Q點也恰好重合,求P點的起始位置表示的數(shù).
【答案】(1); (2)點P是個單位/秒;點Q是1個單位/秒;(3)P點的起始位置表示的數(shù)為-1或2.
【解析】
(1),找55到65之間的完全平方數(shù)可求得,b=-8,在數(shù)軸上表示即可;
(2)出發(fā)4秒后在相遇時點Q比點P多行駛了3個單位,可得關(guān)系式.分析可得Q的速度是P的速度的4倍,設(shè)P的速度為x單位/秒,則Q的速度為4x單位/秒,可得 ,于是可解;
(3)由(2)可知:P的速度為和Q的速度,于是可求PQ的長. 折點為AB中點是原點,P,Q表示的數(shù)互為相反數(shù),據(jù)此可解.
解:(1),找55到65之間的完全平方數(shù)
,所以,b=-8
(2)
∵出發(fā)4秒后在相遇時點Q比點P多行駛了3個單位
∴可得關(guān)系式
∵P從初始點到相遇點經(jīng)過的時間為4s
Q從相遇點到P的初始點經(jīng)過的時間為1s
∴可得Q的速度是P的速度的4倍
∴設(shè)P的速度為x單位/秒,則Q的速度為4x單位/秒
∴,
代入關(guān)系式得
解得
則Q的速度為 單位/秒
答:P的速度為單位/秒,Q的速度為1單位/秒
(3)
由(2)可知:P的速度為單位/秒,Q的速度為1單位/秒
PQ=
由題意,折疊后A,B重合,因此折點為AB中點,即
又∵P,Q運動t秒后,折疊重合,且折點為原點
∴P,Q表示的數(shù)互為相反數(shù)
設(shè)P從y點出發(fā),則Q從(y+5)出發(fā)
則P: Q:
∵P,Q互為相反數(shù)
∵y,t均為整數(shù)
且
∴解得 或
綜上所述:P從-1或2出發(fā)滿足條件
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張長方形紙片分別沿著EP,FP對折,使點B落在點B,點C落在點C′.若點P,B′,C′不在一條直線上,且兩條折痕的夾角∠EPF=85°,則∠B′PC′=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于C點,其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論①abc<0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為( )
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷,圖中帶陰影的方框恰好蓋住四個數(shù),不改變帶陰影的方框的形狀大小,移動方框的位置.
(1)若帶陰影的方框蓋住的4個數(shù)中,A表示的數(shù)是x,求這4個數(shù)的和(用含x的代數(shù)式表示);
(2)若帶陰影的方框蓋住的4個數(shù)之和為82,求出A表示的數(shù);
(3)這4個數(shù)之和可能為38或112嗎?如果可能,請求出這4個數(shù),如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的函數(shù)解析式為,且與軸交于點,直線經(jīng)過點、,直線、交于點.
(1)求直線的函數(shù)解析式;
(2)求的面積;
(3)在直線上是否存在點,使得面積是面積的倍?如果存在,請求出坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的頂點A、C分別在x軸、y軸的正半軸上.點B的坐標(biāo)為(8,4),將該長方形沿OB翻折,點A的對應(yīng)點為點D,OD與BC交于點E.
(I)證明:EO=EB;
(Ⅱ)點P是直線OB上的任意一點,且△OPC是等腰三角形,求滿足條件的點P的坐標(biāo);
(Ⅲ)點M是OB上任意一點,點N是OA上任意一點,若存在這樣的點M、N,使得AM+MN最小,請直接寫出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x-2與y軸交于點C,與x軸交于點B,與反比例函數(shù)y=的圖象在第一象限交于點A,連接OA,若S△AOB∶S△BOC=1∶2,則k的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年7月份小明到銀行開戶,存入1500元,以后每月根據(jù)收支情況存入一筆錢,下表為該人從8月份到12月份的存款情況:則截止到去年12月份,存折上共有( )元錢.
A.9750B.8050C.1750D.9550
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com