【題目】如圖所示,在△ABC中,AB=AC,∠A=120°.
(1)作線段AB的垂直平分線,分別交BC、AB于點M、N(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)連接AM,判斷△AMC的形狀,并給予證明;
(3)求證:CM=2BM.
【答案】(1)見解析;(2)△AMC為直角三角形;(3)證明見解析.
【解析】
(1)尺規(guī)作圖,要按照規(guī)范畫圖進行,要顯示作圖痕跡.
(2)明確△ABC各內(nèi)角的度數(shù),根據(jù)垂直平分線的性質(zhì),連接AM,即可求出∠MAC的度數(shù);
(3)由(2)知△AMC為直角三角形,得出CM與AM的數(shù)量關(guān)系即可得出結(jié)論;
(1)
(2)△AMC為直角三角形.
連接AM,則BM=AM,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∴∠MAB=∠B=30°,∠MAC=90°,
∴△AMC為直角三角形;
(3)∵∠CAM=90°,∠C=30°,
∴CM=2AM.
∵MN垂直平分AB,
∴AM=BM,
∴CM=2BM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD⊥BC,EF⊥BC,垂足分別為D、F,∠2+∠3=180°,試說明:∠GDC=∠B.請補充說明過程,并在括號內(nèi)填上相應(yīng)的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當(dāng)EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個菱形相鄰的兩個頂點,且該菱形的兩條對角線分別與x軸,y軸平行,則稱該菱形為點P,Q的“相關(guān)菱形”.圖1為點P,Q的“相關(guān)菱形”的一個示意圖.
已知點A的坐標(biāo)為(1,4),點B的坐標(biāo)為(b,0),
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點A,B的“相關(guān)菱形”頂點的是;
(2)若點A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為 ,點C的坐標(biāo)為(2,4).若⊙B上存在點M,在線段AC上存在點N,使點M,N的“相關(guān)菱形”為正方形,請直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩支籃球隊進行了5場比賽,比賽成績繪制成了統(tǒng)計圖(如圖)
(1)分別計算甲乙兩隊5場比賽成績的平均分.
(2)就這5場比賽,分別計算兩隊成績的極差;
(3)就這5場比賽,分別計算兩隊成績的方差;
(4)如果從兩隊中選派一支球隊參加籃球錦標(biāo)賽,根據(jù)上述統(tǒng)計,從平均分、極差、方差以及獲勝場數(shù)這四個方面分別進行簡要分析,你認(rèn)為選派哪支球隊參賽更能取得好成績?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M
(1)如圖1,當(dāng)α=90°時,∠AMD的度數(shù)為 °
(2)如圖2,當(dāng)α=60°時,∠AMD的度數(shù)為 °
(3)如圖3,當(dāng)△OCD繞O點任意旋轉(zhuǎn)時,∠AMD與α是否存在著確定的數(shù)量關(guān)系?如果存在,請你用表示∠AMD,并圖3進行證明;若不確定,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com