如圖,⊿ACO的頂點A,C分別是雙曲線與直線在第二象限、第四象限的交點,AB⊥軸于B且S△ABO=

(1)求這兩個函數(shù)的解析式;

(2)求直線與雙曲線的兩個交點A,C的坐標(biāo);

(3)根據(jù)圖象寫出使的自變量x的取值范圍.

 

【答案】

(1);(2)A(-1,3),C(3,-1);(3)

【解析】

試題分析:(1)先根據(jù)反比例函數(shù)的圖象所在的象限判斷出k的符號,在由△ABO的面積求出k的值,進(jìn)而可得出兩個函數(shù)的解析式;

(2)把兩函數(shù)的解析式組成方程組,求出x、y的值,即可得出A、C兩點的坐標(biāo);

(3)直接根據(jù)一次函數(shù)與反比例函數(shù)的交點坐標(biāo)求出反比例函數(shù)的值大于一次函數(shù)的值x的取值范圍即可.

(1)∵反比例函數(shù)的圖象在二、四象限,

∴雙曲線的解析式為

直線的解析式為,即

(2)∵把一次函數(shù)與反比例函數(shù)的解析式組成方程組得:

,解得

∴A(-1,3),C(3,-1);

(23)∵A(-1,3),C(3,-1),

∴當(dāng)時,

考點:反比例函數(shù)與一次函數(shù)的交點問題

點評:解答本題的關(guān)鍵是熟練掌握待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式,能根據(jù)△ABO的面積求出k的值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+3的圖象與y軸交于點C,與x軸交于A、B兩點,其精英家教網(wǎng)圖象頂點為D,OB=OC,tan∠ACO=
13

(1)填空:點A的坐標(biāo)
 
、點B的坐標(biāo)
 
;
(2)求二次函數(shù)y=ax2+bx+3及直線CD的解析式;
(3)直線CD與x軸交于點E,是否存在點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,求出所有點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=
12
x2-2x+1的頂點為P,A為拋物線與y軸的交點,過A與y軸垂直的直線與拋物線的另一交點為B,與拋物線對稱軸交于點O′,過點B和P的直線l交y軸于點C,連接O′C,將△ACO′沿O′C翻折后,點A精英家教網(wǎng)落在點D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點D的坐標(biāo);
(3)拋物線上是否存在點Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ACO的頂點A,C分別是雙曲線數(shù)學(xué)公式與直線y2=-x-(k+1)在第二象限、第四象限的交點,AB⊥x軸于B且S△ABO=數(shù)學(xué)公式
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A,C的坐標(biāo);
(3)根據(jù)圖象寫出使y1>y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省寧波七中九年級第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,⊿ACO的頂點A,C分別是雙曲線與直線在第二象限、第四象限的交點,AB⊥軸于B且SABO=

(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A,C的坐標(biāo);
(3)根據(jù)圖象寫出使的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案